Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37066338

ABSTRACT

Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport of specific macromolecules while impeding the exchange of unsolicited material. However, key aspects of this gating mechanism remain controversial. To address this issue, we determined the nanoscopic behavior of the permeability barrier directly within yeast S. cerevisiae NPCs at transport-relevant timescales. We show that the large intrinsically disordered domains of phenylalanine-glycine repeat nucleoporins (FG Nups) exhibit highly dynamic fluctuations to create transient voids in the permeability barrier that continuously shape-shift and reseal, resembling a radial polymer brush. Together with cargo-carrying transport factors the FG domains form a feature called the central plug, which is also highly dynamic. Remarkably, NPC mutants with longer FG domains show interweaving meshwork-like behavior that attenuates nucleocytoplasmic transport in vivo. Importantly, the bona fide nanoscale NPC behaviors and morphologies are not recapitulated by in vitro FG domain hydrogels. NPCs also exclude self-assembling FG domain condensates in vivo, thereby indicating that the permeability barrier is not generated by a self-assembling phase condensate, but rather is largely a polymer brush, organized by the NPC scaffold, whose dynamic gating selectivity is strongly enhanced by the presence of transport factors.

2.
Biochemistry ; 58(6): 484-488, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30605322

ABSTRACT

Large multiprotein nanopores remain difficult to reconstitute in vitro, such as, for instance, the nuclear pore complex (NPC) that regulates macromolecular transport between the nucleus and cytoplasm in cells. Here, we report that two NPC pore membrane proteins self-assemble into ∼20 nm diameter nanopores following in vitro reconstitution into lipid bilayers. Pore formation follows from the assembly of Pom121 and Ndc1 oligomers, which arrange into ringlike membrane structures that encircle aqueous, electrically conductive pores. This represents a key step toward reconstituting membrane-embedded NPC mimics for biological studies and biotechnological applications.


Subject(s)
Cell Nucleus/metabolism , Lipid Bilayers/metabolism , Membrane Glycoproteins/metabolism , Nanopores , Nuclear Envelope/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Humans , Membrane Glycoproteins/chemistry , Nuclear Pore Complex Proteins/chemistry
3.
Semin Cell Dev Biol ; 68: 27-33, 2017 08.
Article in English | MEDLINE | ID: mdl-28579449

ABSTRACT

Nuclear pore complexes (NPCs) are the sole conduits that facilitate macromolecular exchange between the nucleus and cytosol. Recent advancements have led to a more highly resolved NPC structure. However, our understanding of the NPC modus operandi that facilitates transport selectivity, and speed, of diverse cargoes remains incomplete. For the most part, assorted cargo-complexes of different sizes traverse the NPC central channel in milliseconds, yet little is known about the nanoscopic movements of its barrier-forming Phe-Gly nucleoporins (FG Nups) and related sub-structures at transport-relevant time and length scales. Here, we discuss how dynamic FG Nup behavior may confer NPCs with an effective permeability barrier according to the functional needs of the cell. Moreover, we postulate that structural flexibility might resonate throughout the NPC framework from the cytoplasmic filaments to the nuclear basket.


Subject(s)
Cell Nucleus/metabolism , Microscopy, Atomic Force/methods , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Humans
4.
J Lipid Res ; 58(5): 962-973, 2017 05.
Article in English | MEDLINE | ID: mdl-28336574

ABSTRACT

SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS)1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog, ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, SMS-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate the head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with Glu permitting SMS-catalyzed CPE production and Asp confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.


Subject(s)
Catalytic Domain , Mutagenesis, Site-Directed , Sphingolipids/metabolism , Transferases (Other Substituted Phosphate Groups)/chemistry , Transferases (Other Substituted Phosphate Groups)/metabolism , Amino Acid Sequence , Cell Line, Tumor , Humans , Protein Domains , Substrate Specificity , Transferases (Other Substituted Phosphate Groups)/genetics
5.
Chimia (Aarau) ; 70(6): 413-7, 2016.
Article in English | MEDLINE | ID: mdl-27363369

ABSTRACT

Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules (i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells (i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration gradients in artificial organelles.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , Biological Transport
6.
J Lipid Res ; 57(7): 1273-85, 2016 07.
Article in English | MEDLINE | ID: mdl-27165857

ABSTRACT

SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS) 1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, sphingomyelin synthase-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmatic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with glutamic acid permitting SMS-catalyzed CPE production and aspartic acid confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.


Subject(s)
Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Protein Engineering , Sphingomyelins/biosynthesis , Transferases (Other Substituted Phosphate Groups)/genetics , Cell Membrane/enzymology , Cell Membrane/metabolism , Cell-Free System , Click Chemistry , Endoplasmic Reticulum/enzymology , Golgi Apparatus/enzymology , HeLa Cells , Humans , Membrane Proteins/chemistry , Mutagenesis, Site-Directed , Nerve Tissue Proteins/chemistry , Sphingomyelins/genetics , Transferases (Other Substituted Phosphate Groups)/chemistry
7.
J Cell Sci ; 128(11): 2021-32, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25918123

ABSTRACT

The plasma membrane, trans-Golgi network and endosomal system of eukaryotic cells are populated with flippases that hydrolyze ATP to help establish asymmetric phospholipid distributions across the bilayer. Upholding phospholipid asymmetry is vital to a host of cellular processes, including membrane homeostasis, vesicle biogenesis, cell signaling, morphogenesis and migration. Consequently, defining the identity of flippases and their biological impact has been the subject of intense investigations. Recent work has revealed a remarkable degree of kinship between flippases and cation pumps. In this Commentary, we review emerging insights into how flippases work, how their activity is controlled according to cellular demands, and how disrupting flippase activity causes system failure of membrane function, culminating in membrane trafficking defects, aberrant signaling and disease.


Subject(s)
Phospholipid Transfer Proteins/metabolism , Phospholipids/metabolism , Animals , Cell Membrane/metabolism , Endosomes/metabolism , Humans , trans-Golgi Network/metabolism
8.
J Biol Chem ; 287(36): 30529-40, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22791719

ABSTRACT

Type 4 P-type ATPases (P(4)-ATPases) catalyze phospholipid transport to generate phospholipid asymmetry across membranes of late secretory and endocytic compartments, but their kinship to cation-transporting P-type transporters raised doubts about whether P(4)-ATPases alone are sufficient to mediate flippase activity. P(4)-ATPases form heteromeric complexes with Cdc50 proteins. Studies of the enzymatic properties of purified P(4)-ATPase·Cdc50 complexes showed that catalytic activity depends on direct and specific interactions between Cdc50 subunit and transporter, whereas in vivo interaction assays suggested that the binding affinity for each other fluctuates during the transport reaction cycle. The structural determinants that govern this dynamic association remain to be established. Using domain swapping, site-directed, and random mutagenesis approaches, we here show that residues throughout the subunit contribute to forming the heterodimer. Moreover, we find that a precise conformation of the large ectodomain of Cdc50 proteins is crucial for the specificity and functionality to transporter/subunit interactions. We also identified two highly conserved disulfide bridges in the Cdc50 ectodomain. Functional analysis of cysteine mutants that disrupt these disulfide bridges revealed an inverse relationship between subunit binding and P(4)-ATPase-catalyzed phospholipid transport. Collectively, our data indicate that a dynamic association between subunit and transporter is crucial for the transport reaction cycle of the heterodimer.


Subject(s)
Adenosine Triphosphatases/metabolism , Multiprotein Complexes/metabolism , Phospholipid Transfer Proteins/metabolism , Protein Multimerization/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphatases/genetics , Biological Transport, Active/physiology , Multiprotein Complexes/genetics , Mutation , Peptide Mapping/methods , Phospholipid Transfer Proteins/genetics , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...