Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 61(9): 4052-4066, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29653491

ABSTRACT

Curative interferon and ribavirin sparing treatments for hepatitis C virus (HCV)-infected patients require a combination of mechanistically orthogonal direct acting antivirals. A shared component of these treatments is usually an HCV NS5A inhibitor. First generation FDA approved treatments, including the component NS5A inhibitors, do not exhibit equivalent efficacy against HCV virus genotypes 1-6. In particular, these first generation NS5A inhibitors tend to select for viral drug resistance. Ombitasvir is a first generation HCV NS5A inhibitor included as a key component of Viekira Pak for the treatment of patients with HCV genotype 1 infection. Since the launch of next generation HCV treatments, functional cure for genotype 1-6 HCV infections has been achieved, as well as shortened treatment duration across a wider spectrum of genotypes. In this paper, we show how we have modified the anchor, linker, and end-cap architecture of our NS5A inhibitor design template to discover a next generation NS5A inhibitor pibrentasvir (ABT-530), which exhibits potent inhibition of the replication of wild-type genotype 1-6 HCV replicons, as well as improved activity against replicon variants demonstrating resistance against first generation NS5A inhibitors.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Drug Design , Hepacivirus/drug effects , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Animals , Antiviral Agents/pharmacokinetics , Benzimidazoles/pharmacokinetics , Genotype , Hepacivirus/genetics , Hepacivirus/physiology , Mice , Pyrrolidines/pharmacokinetics , Structure-Activity Relationship , Tissue Distribution , Virus Replication/drug effects
2.
J Med Chem ; 61(3): 1153-1163, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29342358

ABSTRACT

ABT-072 is a non-nucleoside HCV NS5B polymerase inhibitor that was discovered as part of a program to identify new direct-acting antivirals (DAAs) for the treatment of HCV infection. This compound was identified during a medicinal chemistry effort to improve on an original lead, inhibitor 1, which we described in a previous publication. Replacement of the amide linkage in 1 with a trans-olefin resulted in improved compound permeability and solubility and provided much better pharmacokinetic properties in preclinical species. Replacement of the dihydrouracil in 1 with an N-linked uracil provided better potency in the genotype 1 replicon assay. Results from phase 1 clinical studies supported once-daily oral dosing with ABT-072 in HCV infected patients. A phase 2 clinical study that combined ABT-072 with the HCV protease inhibitor ABT-450 provided a sustained virologic response at 24 weeks after dosing (SVR24) in 10 of 11 patients who received treatment.


Subject(s)
Cytosine/analogs & derivatives , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Hepacivirus/enzymology , Stilbenes/chemistry , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Biological Availability , Chemistry Techniques, Synthetic , Cytosine/chemical synthesis , Cytosine/chemistry , Cytosine/pharmacokinetics , Cytosine/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Permeability , Stereoisomerism , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Tissue Distribution , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...