Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37176803

ABSTRACT

Phytic acid (PA) acts as a storehouse for the majority of the mineral phosphorous (P) in maize; ~80% of the total P stored as phytate P is not available to monogastric animals and thereby causes eutrophication. In addition, phytic acid chelates positively charged minerals making them unavailable in the diet. The mutant lpa1-1 allele reduces PA more than the wild-type LPA1 allele. Further, mutant gene opaque2 (o2) enhances lysine and tryptophan and crtRB1 enhances provitamin-A (proA) more than wild-type O2 and CRTRB1 alleles, respectively. So far, the expression pattern of the mutant lpa1-1 allele has not been analysed in maize genotypes rich in lysine, tryptophan and proA. Here, we analysed the expression pattern of wild and mutant alleles of LPA1, O2 and CRTRB1 genes in inbreds with (i) mutant lpa1-1, o2 and crtRB1 alleles, (ii) wild-type LPA1 allele and mutant o2 and crtRB1 alleles and (iii) wild-type LPA1, O2 and CRTRB1 alleles at 15, 30 and 45 days after pollination (DAP). The average reduction of PA/total phosphorous (TP) in lpa1-1 mutant inbreds was 29.30% over wild-type LPA1 allele. The o2 and crtRB1-based inbreds possessed ~two-fold higher amounts of lysine and tryptophan, and four-fold higher amounts of proA compared to wild-type alleles. The transcript levels of lpa1-1, o2 and crtRB1 genes in lpa1-1-based inbreds were significantly lower than their wild-type versions across kernel development. The lpa1-1, o2 and crtRB1 genes reached their highest peak at 15 DAP. The correlation of transcript levels of lpa1-1 was positive for PA/TP (r = 0.980), whereas it was negative with inorganic phosphorous (iP) (r = -0.950). The o2 and crtRB1 transcripts showed negative correlations with lysine (r = -0.887) and tryptophan (r = -0.893), and proA (r = -0.940), respectively. This is the first comprehensive study on lpa1-1 expression in the maize inbreds during different kernel development stages. The information generated here offers great potential for comprehending the dynamics of phytic acid regulation in maize.

2.
Genes (Basel) ; 14(1)2023 01 14.
Article in English | MEDLINE | ID: mdl-36672962

ABSTRACT

A set of 188 recombinant inbred lines (RILs) derived from a cross between a high-yielding Indian bread wheat cultivar HD2932 and a synthetic hexaploid wheat (SHW) Synthetic 46 derived from tetraploid Triticum turgidum (AA, BB 2n = 28) and diploid Triticum tauschii (DD, 2n = 14) was used to identify novel genomic regions associated in the expression of grain iron concentration (GFeC), grain zinc concentration (GZnC), grain protein content (GPC) and thousand kernel weight (TKW). The RIL population was genotyped using SNPs from 35K Axiom® Wheat Breeder's Array and 34 SSRs and phenotyped in two environments. A total of nine QTLs including five for GPC (QGpc.iari_1B, QGpc.iari_4A, QGpc.iari_4B, QGpc.iari_5D, and QGpc.iari_6B), two for GFeC (QGfec.iari_5B and QGfec.iari_6B), and one each for GZnC (QGznc.iari_7A) and TKW (QTkw.iari_4B) were identified. A total of two stable and co-localized QTLs (QGpc.iari_4B and QTkw.iari_4B) were identified on the 4B chromosome between the flanking region of Xgwm149-AX-94559916. In silico analysis revealed that the key putative candidate genes such as P-loop containing nucleoside triphosphatehydrolase, Nodulin-like protein, NAC domain, Purine permease, Zinc-binding ribosomal protein, Cytochrome P450, Protein phosphatase 2A, Zinc finger CCCH-type, and Kinesin motor domain were located within the identified QTL regions and these putative genes are involved in the regulation of iron homeostasis, zinc transportation, Fe, Zn, and protein remobilization to the developing grain, regulation of grain size and shape, and increased nitrogen use efficiency. The identified novel QTLs, particularly stable and co-localized QTLs are useful for subsequent use in marker-assisted selection (MAS).


Subject(s)
Polymorphism, Single Nucleotide , Triticum , Triticum/genetics , Polymorphism, Single Nucleotide/genetics , Bread/analysis , Biofortification , Edible Grain , Iron , Zinc
3.
J Appl Genet ; 62(3): 419-429, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33886083

ABSTRACT

Sweet corn has gained worldwide popularity. Traditional sweet corn possesses low concentration of essential nutrients such as lysine (0.15-0.25%), tryptophan (0.03-0.04%) and provitamin-A (proA 3-4 ppm), and deficiency leads to serious health problems in humans. Here, stacking of shrunken2 (sh2), opaque2 (o2), lycopene epsilon cyclase (lcyE) and ß-carotene hydroxylase (crtRB1) genes  were undertaken in the parents of four hybrids viz., APQH1, APHQ4, APHQ5 and APHQ7 using marker-assisted backcross breeding (MABB). Gene-linked markers (umc2276 and umc1320) for sh2, while gene-based markers for o2 (umc1066 and phi057), lcyE (5'TE-InDel) and crtRB1 (3'TE-InDel), were used for genotyping in BC1F1, BC2F1 and BC2F2. Selected backcross progenies showed high recovery of recurrent parent genome (92.4-97.7%). The reconstituted sweet corn hybrids possessed significantly high lysine (0.390%), tryptophan (0.082%) and proA (21.14 ppm), coupled with high kernel sweetness (brix 18.96%). The improved sweet corn hybrids had high cob yield (12.22-15.33 t/ha) across three environments. These newly developed biofortified sweet corn hybrids possess great significance in providing balanced nutrition. This is the first report of combining sh2, o2, lcyE and crtRB1 genes for enrichment of sweet corn hybrids with multiple essential nutrients.


Subject(s)
Food, Fortified , Nutritive Value , Plant Breeding , Zea mays , Alleles , Genes, Plant , Genetic Markers , Genomics , Zea mays/genetics
4.
Sci Rep ; 7(1): 10950, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28887464

ABSTRACT

Waterlogging causes yield penalty in maize-growing countries of subtropical regions. Transcriptome analysis of the roots of a tolerant inbred HKI1105 using RNA sequencing revealed 21,364 differentially expressed genes (DEGs) under waterlogged stress condition. These 21,364 DEGs are known to regulate important pathways including energy-production, programmed cell death (PCD), aerenchyma formation, and ethylene responsiveness. High up-regulation of invertase (49-fold) and hexokinase (36-fold) in roots explained the ATP requirement in waterlogging condition. Also, high up-regulation of expansins (42-fold), plant aspartic protease A3 (19-fold), polygalacturonases (16-fold), respiratory burst oxidase homolog (12-fold), and hydrolases (11-fold) explained the PCD of root cortical cells followed by the formation of aerenchyma tissue during waterlogging stress. We hypothesized that the oxygen transfer in waterlogged roots is promoted by a cross-talk of fermentative, metabolic, and glycolytic pathways that generate ATPs for PCD and aerenchyma formation in root cortical cells. SNPs were mapped to the DEGs regulating aerenchyma formation (12), ethylene-responsive factors (11), and glycolysis (4) under stress. RNAseq derived SNPs can be used in selection approaches to breed tolerant hybrids. Overall, this investigation provided significant evidence of genes operating in the adaptive traits such as ethylene production and aerenchyma formation to cope-up the waterlogging stress.


Subject(s)
Adaptation, Physiological , Gene Expression Regulation, Plant , Genes, Plant , Stress, Physiological , Zea mays/genetics , Aspartic Acid Proteases/genetics , Aspartic Acid Proteases/metabolism , Hexokinase/genetics , Hexokinase/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Oxygen/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polygalacturonase/genetics , Polygalacturonase/metabolism , Polymorphism, Single Nucleotide , Zea mays/physiology , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism
5.
Bioinform Biol Insights ; 11: 1177932217747277, 2017.
Article in English | MEDLINE | ID: mdl-29317803

ABSTRACT

Cell wall modification (CWM) promotes the formation of aerenchyma in roots under waterlogging conditions as an adaptive mechanism. Lysigenous aerenchyma formation in roots improves oxygen transfer in plants, which highlights the importance of CWM as a focal point in waterlogging stress tolerance. We investigated the structural and functional compositions of CWM genes and their expression patterns under waterlogging conditions in maize. Cell wall modification genes were identified for 3 known waterlogging-responsive cis-acting regulatory elements, namely, GC motif, anaerobic response elements, and G-box, and 2 unnamed elements. Structural motifs mapped in CWM genes were represented in genes regulating waterlogging stress-tolerant pathways, including fermentation, glycolysis, programmed cell death, and reactive oxygen species signaling. The highly aligned regions of characterized and uncharacterized CWM proteins revealed common structural domains amongst them. Membrane spanning regions present in the protein structures revealed transmembrane activity of CWM proteins in the plant cell wall. Cell wall modification proteins had interacted with ethylene-responsive pathway regulating genes (E3 ubiquitin ligases RNG finger and F-box) in a maize protein-protein interaction network. Cell wall modification genes had also coexpressed with energy metabolism, programmed cell death, and reactive oxygen species signaling, regulating genes in a single coexpression cluster. These configurations of CWM genes can be used to modify the protein expression in maize under waterlogging stress condition. Our study established the importance of CWM genes in waterlogging tolerance, and these genes can be used as candidates in introgression breeding and genome editing experiments to impart tolerance in maize hybrids.

SELECTION OF CITATIONS
SEARCH DETAIL
...