Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
ACS Chem Neurosci ; 15(7): 1388-1414, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38525886

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia, which arises due to low levels of acetyl and butyrylcholines, an increase in oxidative stress, inflammation, metal dyshomeostasis, Aß and tau aggregations. The currently available drugs for AD treatment can provide only symptomatic relief without interfering with pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multifunctional molecules for AD, systematic SAR studies on EJMC-4e were caried out to improve its multifunctional properties. The rigorous medicinal efforts led to the development of 12o, which displayed a 15-fold enhancement in antioxidant properties and a 2-fold increase in the activity against AChE and BChE over EJMC-4e. Molecular docking and dynamics studies revealed the binding sites and stability of the complex of 12o with AChE and BChE. The PAMPA-BBB assay clearly demonstrated that 12o can easily cross the blood-brain barrier. Interestingly, 12o also expresses promising metal chelation activity, while EJMC-4e was found to be devoid of this property. Further, 12o inhibited metal-induced or self Aß1-42 aggregation. Observing the neuroprotection ability of 12o against H2O2-induced oxidative stress in the PC-12 cell line is noteworthy. Furthermore, 12o also inhibited NLRP3 inflammasome activation and attenuated mitochondrial-induced ROS and MMP damage caused by LPS and ATP in HMC-3 cells. In addition, 12o is able to effectively reduce mitochondrial and cellular oxidative stress in the AD Drosophila model. Finally, 12o could reverse memory impairment in the scopolamine-induced AD mice model, as evident through in vivo and ex vivo studies. These findings suggest that this compound may act as a promising candidate for further improvement in the management of AD.


Subject(s)
Alzheimer Disease , Coumaric Acids , Mice , Rats , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Inflammasomes , Amyloid beta-Peptides/metabolism , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , NLR Family, Pyrin Domain-Containing 3 Protein , Hydrogen Peroxide , Metals , PC12 Cells , Acetylcholinesterase/metabolism
2.
Methods Mol Biol ; 2761: 511-528, 2024.
Article in English | MEDLINE | ID: mdl-38427259

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative condition, primarily affecting dopaminergic neurons. It is defined by motor impairments, such as bradykinesia, stiffness, resting tremor, and postural instability. The striatum, a structure essential for motor control, is impaired in function due to the significant loss of dopaminergic neurons in the substantia nigra and the development of Lewy bodies in the surviving nigral dopaminergic neurons. Olfactory impairment is one of the earliest indications of neurodegenerative disorders like PD that appear years before motor symptoms and cognitive decline development. Olfactory dysfunction is the most common nonmotor PD sign in at least 90% of cases, frequently occurring 5-10 years before motor disturbances. Surprisingly, even though olfactory impairment is intimately linked to PD and is thought to be a potential biomarker, little is known about the brain process underlying this failure. Exposure to environmental toxins has been linked to olfactory dysfunction, leading to nigral neurodegeneration and loss of motor functions. Behavioral neuroscience plays a significant role in identifying and characterizing these olfactory and motor symptoms. In preclinical research, novel treatment approaches are being evaluated in rodent models by behavioral phenotyping to ensure their efficacy. This chapter describes neurobehavioral analysis to assess olfactory and motor dysfunction in rodent models of Parkinson's disease.


Subject(s)
Olfaction Disorders , Parkinson Disease , Humans , Brain , Substantia Nigra , Corpus Striatum , Dopaminergic Neurons , Olfaction Disorders/diagnosis , Olfaction Disorders/etiology
3.
JHEP Rep ; 6(2): 100974, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38283757

ABSTRACT

Background & Aims: The mechanism behind the progressive pathological alteration in metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH)-associated hepatocellular carcinoma (HCC) is poorly understood. In the present study, we investigated the role of the polyol pathway enzyme AKR1B1 in metabolic switching associated with MASLD/MASH and in the progression of HCC. Methods: AKR1B1 expression was estimated in the tissue and plasma of patients with MASLD/MASH, HCC, and HCC with diabetes mellitus. The role of AKR1B1 in metabolic switching in vitro was assessed through media conditioning, lentiviral transfection, and pharmacological probes. A proteomic and metabolomic approach was applied for the in-depth investigation of metabolic pathways. Preclinically, mice were subjected to a high-fructose diet and diethylnitrosamine to investigate the role of AKR1B1 in the hyperglycemia-mediated metabolic switching characteristic of MASLD-HCC. Results: A significant increase in the expression of AKR1B1 was observed in tissue and plasma samples from patients with MASLD/MASH, HCC, and HCC with diabetes mellitus compared to normal samples. Mechanistically, in vitro assays revealed that AKR1B1 modulates the Warburg effect, mitochondrial dynamics, the tricarboxylic acid cycle, and lipogenesis to promote hyperglycemia-mediated MASLD and cancer progression. A pathological increase in the expression of AKR1B1 was observed in experimental MASLD-HCC, and expression was positively correlated with high blood glucose levels. High-fructose diet + diethylnitrosamine-treated animals also exhibited statistically significant elevation of metabolic markers and carcinogenesis markers. AKR1B1 inhibition with epalrestat or NARI-29 inhibited cellular metabolism in in vitro and in vivo models. Conclusions: Pathological AKR1B1 modulates hepatic metabolism to promote MASLD-associated hepatocarcinogenesis. Aldose reductase inhibition modulates the glycolytic pathway to prevent precancerous hepatocyte formation. Impact and implications: This research work highlights AKR1B1 as a druggable target in metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC), which could provide the basis for the development of new chemotherapeutic agents. Moreover, our results indicate the potential of plasma AKR1B1 levels as a prognostic marker and diagnostic test for MASLD and associated HCC. Additionally, a major observation in this study was that AKR1B1 is associated with the promotion of the Warburg effect in HCC.

4.
Int Immunopharmacol ; 122: 110585, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421777

ABSTRACT

Ulcerative colitis (UC) is an idiopathic, chronic disorder of the intestines characterized by excessive inflammation and oxidative stress. Loganic acid (LA) is an iridoid glycoside reported to have antioxidant and anti-inflammatory properties. However, the beneficial effects of LA on UC are unexplored yet. Thus, this study aims to explore the potential protective effects of LA and its possible mechanisms. In-vitro models were employed using LPS-stimulated RAW 264.7 macrophage cells, and Caco-2 cells, whereas an in-vivo model of ulcerative colitis was employed using 2.5% DSS in BALB/c mice. Results indicated that LA significantly suppressed the intracellular ROS levels and inhibited the phosphorylation of NF-κB in both RAW 264.7 and Caco-2 cells, contrarily LA activated the Nrf2 pathway in RAW 264.7 cells. In DSS-induced colitis mice, LA significantly alleviated the inflammation and colonic damage by decreasing the pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, and IFN-γ), oxidative stress markers (MDA, and NO), and also expression levels of various inflammatory proteins (TLR4 and NF-кB) which was evidenced by immunoblotting. On the contrary, the release of GSH, SOD, HO-1, and Nrf2 were profoundly increased upon LA treatment.Subsequently, molecular docking studies showed that LA interacts with active site regions of target proteins (TLR4, NF-κB, SIRT1, and Nrf2) through hydrogen bonding and salt bridge interaction. The current findings demonstrated that LA could exhibit a protective effect in DSS-induced ulcerative colitis through its anti-inflammatory and anti-oxidant effects via inactivating the TLR4/NF-κB signaling pathway and activating the SIRT1/Nrf2 pathways.


Subject(s)
Colitis, Ulcerative , Humans , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , NF-kappa B/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , NF-E2-Related Factor 2/metabolism , Toll-Like Receptor 4/metabolism , Sirtuin 1 , Molecular Docking Simulation , Caco-2 Cells , Inflammation/drug therapy , Anti-Inflammatory Agents/adverse effects , Dextran Sulfate
5.
Environ Toxicol Pharmacol ; 101: 104183, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37321333

ABSTRACT

Exposure to ambient particulate matter (PM2.5) has been shown to disturb the gut microbiome homeostasis and cause initiation of neuroinflammation and neurodegeneration via gut-brain bi-directional axis. Polyaromatic hydrocarbons (PAHs), which are carcinogenic and mutagenic, are important organic constituents of PM2.5 that could be involved in the microbiome-gut-brain axis-mediated neurodegeneration. Melatonin (ML) has been shown to modulate the microbiome and curb inflammation in the gut and brain. However, no studies have been reported for its effect on PM2.5-induced neuroinflammation. In the current study, it was observed that treatment with ML at 100 µM significantly inhibits microglial activation (HMC-3 cells) and colonic inflammation (CCD-841 cells) by the conditioned media from PM2.5 exposed BEAS2B cells. Further, melatonin treatment at a dose of 50 mg/kg to C57BL/6 mice exposed to PM2.5 (at a dose of 60 µg/animal) for 90 days significantly alleviated the neuroinflammation and neurodegeneration caused by PAHs in PM2.5 by modulating olfactory-brain and microbiome-gut-brain axis.


Subject(s)
Air Pollutants , Melatonin , Animals , Mice , Particulate Matter/toxicity , Particulate Matter/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Melatonin/pharmacology , Melatonin/therapeutic use , Brain-Gut Axis , Neuroinflammatory Diseases , Mice, Inbred C57BL , Inflammation
6.
Chem Biol Interact ; 381: 110566, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37257577

ABSTRACT

The clinical use of doxorubicin (Dox) is narrowed due to its carbonyl reduction to doxorubicinol (Doxol) implicating resistance and cardiotoxicity. Hence, in the present study we have evaluated the cardioprotective effect of AKR1B1 (or aldose reductase, AR) inhibitor NARI-29 (epalrestat (EPS) analogue) and its effect in the Dox-modulated calcium/CaMKII/MuRF1 axis. Initially, the breast cancer patient survival associated with AKR1B1 expression was calculated using Kaplan Meier-plotter (KM-plotter). Further, breast cancer, cardiomyoblast (H9c2), and macrophage (RAW 264.7) cell lines were used to establish the in vitro combination effect of NARI-29 and Dox. To develop the cardiotoxicity model, mice were given Dox 2.5 mg/kg (i.p.), biweekly. The effect of AKR1B1 inhibition using NARI-29 on molecular and cardiac functional changes was measured using echocardiography, fluorescence-imaging, ELISA, immunoblotting, flowcytometry, High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FD) and cytokine-bead array methods. The bioinformatics data suggested that a high expression of AKR1B1 is associated with significantly low survival of breast cancer patients undergoing chemotherapy; hence, it could be a target for chemo-sensitization and chemo-prevention. Further, in vitro studies showed that AKR1B1 inhibition with NARI-29 has increased the accumulation and sensitized Dox to breast cancer cell lines. However, treatment with NARI-29 has alleviated the Dox-induced toxicity to cardiomyocytes and decreased the secretion of inflammatory cytokines from RAW 264.7 cells. In vivo studies revealed that the NARI-29 (25 and 50 mg/kg) has prevented the functional, histological, biochemical, and molecular alterations induced by Dox treatment. Moreover, we have shown that NARI-29 has prevented the carbonyl reduction of Dox to Doxol in the mouse heart, which reduced the calcium overload, prevented phosphorylation of CaMKII, and reduced the expression of MuRF1 to protect from cardiac injury and apoptosis. Hence in conclusion, AKR1B1 inhibitor NARI-29 could be used as an adjuvant therapeutic agent with Dox to prevent cardiotoxicity and synergize anti-breast cancer activity.


Subject(s)
Aldehyde Reductase , Cardiotoxicity , Rhodanine , Animals , Mice , Aldehyde Reductase/metabolism , Apoptosis , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiotoxicity/metabolism , Doxorubicin/adverse effects , Myocytes, Cardiac/metabolism , Oxidative Stress , Rhodanine/analogs & derivatives , Rhodanine/pharmacology
7.
Int Immunopharmacol ; 119: 110145, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37044030

ABSTRACT

Identifying the target linking inflammation and oxidative stress to aggravate the disease progression will help to prevent colitis associated carcinogenesis. Since AKR1B1 overexpression is observed in inflammatory diseases and various cancers, we have investigated the role of AKR1B1 in colitis-associated colon carcinogenesis with the aid of epalrestat and its potent analogue NARI-29 (investigational molecule) as pharmacological probes. A TNF-α inducible NF-κB reporter cell line (GloResponse™ NF-κB-RE-luc2P HEK293) and dextran sodium sulfate (DSS) and 1,2 dimethyl hydrazine (DMH))-induced mouse model was used to investigate our hypothesis in vitro and in vivo. Clinically, an increased expression of AKR1B1 was observed in patients with ulcerative colitis. Our in vitro and in vivo findings suggest that the AKR1B1 modulated inflammation and ROS generation for the progression of colitis to colon cancer. AKR1B1 overexpression was observed in DSS + DMH-treated mice colons. Moreover, we could observe histopathological changes like immune cell infiltration, aberrant crypt foci, and tumour formation in DC groups. Mechanistically, we have witnessed modulation of the IKK/IκB/NF-κB and Akt/FOXO-3a/DR axis, increased inflammatory cytokines, increased expression of proliferative markers, Ki-67 and PCNA, and accumulation of ß-catenin in the colon epithelium. However, pharmacological inhibition of AKR1B1 using NARI-29 or EPS has reversed the clinical, histopathological, and molecular alterations induced by DSS + DMH, confirming the obvious role of AKR1B1 in the promotion of colitis-associated carcinogenesis. In conclusion, our findings suggest that AKR1B1 targeted therapy could be a promising strategy for preventing CA-CRC and NARI-29 could be developed as a potent AKR1B1 inhibitor.


Subject(s)
Colitis, Ulcerative , Colitis , Colonic Neoplasms , Mice , Humans , Animals , NF-kappa B/metabolism , HEK293 Cells , Colitis/drug therapy , Colitis, Ulcerative/drug therapy , Inflammation/pathology , Colonic Neoplasms/pathology , Carcinogenesis , Dextran Sulfate , Disease Models, Animal , Aldehyde Reductase
8.
J Ethnopharmacol ; 282: 114600, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34487845

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cleome species in particular (C. gynandra Linn, C. viscosa Linn, C. rutidosperma DC, C. felina Linn.), commonly known as spider flowers, belong to the genus of flowering plants in Cleomaceae family. Found primarily in the African countries (Kenya, Tanzania, Egypt, South Africa, and Nigeria), Asian countries (India and Afghanistan), European countries (Italy), and also in other countries like Brazil and Austria. These plants are commonly cultivated as a vegetable crop for their nutritional benefits, and the leaves are widely consumed for their health-promoting effects. The different parts of the plants, such as leaves, seeds, flowers, and roots, are used to treat acute and chronic inflammatory disorders, hepatotoxicity, malaria, fungal diseases, and cancer. AIM OF THE STUDY: Detailed investigations in underlining the molecular mechanisms and their wide variety of effects in treating various diseases remain ambiguous. The review focuses on an in-depth discussion of studies targeting phytochemistry and polypharmacology. Thus, the review aims to recapitulate the therapeutic potential of the components of Cleome involved in the treatment of a wide variety of ailments from ancient times were collected and presented along with strategies aiming for future studies. MATERIALS AND METHODS: The information provided is collected from several scientific databases (PubMed, Elsevier, ScienceDirect) and traditional medicine books, and other professional websites. RESULTS AND CONCLUSION: Investigations and current evidence revealed that the different chemical constituents present in cleome species possess various health-promoting effects along with the aerial parts showing promising traditional uses in traditional healing and culinary. An explorative survey in the current review highlights the traditional healing effects along with a broad scope of studies that can be performed in the future.


Subject(s)
Cleome , Ethnopharmacology , Ethnopharmacology/methods , Ethnopharmacology/trends , Functional Food , Humans , Medicine, Traditional/methods , Medicine, Traditional/trends , Phytotherapy/methods , Plants, Medicinal
9.
ACS Chem Neurosci ; 13(1): 53-68, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34904823

ABSTRACT

NLRP3 activation plays a key role in the initiation and progression of a variety of neurodegenerative diseases. However, understanding the molecular mechanisms involved in the bidirectional signaling required to activate the NLRP3 inflammasomes is the key to treating several diseases. Hence, the present study aimed to investigate the role of lipopolysaccharide (LPS) and hydrogen peroxide (H2O2) in activating NLRP3 inflammasome-driven neurodegeneration and elucidated the neuroprotective role of perillyl alcohol (PA) in in vitro and in vivo models of Parkinson's disease (PD). Initial priming of microglial cells with LPS following treatment with H2O2 induced NF-κB translocation to the nucleus with a robust generation of free radicals that act as signal 2 in augmenting NLRP3 inflammasome assembly and its downstream targets. PA treatment suppresses the nuclear translocation of NF-κB, enhances PARKIN translocation into the mitochondria, and maintains cellular redox homeostasis in both mouse and human microglial cells that limit NLRP3 inflammasome activation along with processing of active caspase-1, IL-1ß, and IL-18. To further correlate the in vitro study with the in vivo MPTP model, treatment with PA also inhibited the nuclear translocation of NF-κB and downregulated the NLRP3 inflammasome activation. PA administration upregulated various antioxidant enzymes' levels and restored the level of dopamine and other neurotransmitters in the striatum of the mouse brain, subsequently improving the behavioral activities. Therefore, we conclude that NLRP3 inflammasome activation required a signal from damaged mitochondria for its activation. Further pharmacological scavenging of free radicals restricts microglia activation and simultaneously supports neuronal survival via targeting the NLRP3 inflammasome pathway in PD.


Subject(s)
Inflammasomes , Parkinson Disease , Animals , Dopaminergic Neurons , Hydrogen Peroxide , Mice , Monoterpenes , NLR Family, Pyrin Domain-Containing 3 Protein
10.
J Psychiatr Res ; 144: 462-482, 2021 12.
Article in English | MEDLINE | ID: mdl-34768069

ABSTRACT

Major depressive disorder (MDD) is the foremost leading psychiatric illness prevailing around the globe. It usually exists along with anxiety and other clinical conditions (cardiovascular, cancer, neurodegenerative diseases, and infectious diseases). Chronic restraint stress (RS) and LPS-induce neurobehavioral alterations in rodent models however their interaction studies in association with the pathogenesis of MDD are still unclear. Therefore, the current study was aimed to investigate the LPS influence on chronic RS mediated redox imbalance, apoptosis, and autophagic dysregulation in the hippocampus (HIP) and frontal cortex (FC) of mice brain. Male Balb/c mice were exposed to 28 days consecutive stress (6h/day) with a single-dose LPS challenge (0.83 mg/kg, i.p.) on the last day (Day 28). In addition, we also carried out separate study to understand physiological relevance, where we used the DSS (dextran sulfate sodium), a water soluble polysaccharide (negatively charged) and studied its influence on RS induced neurobehavioral and certain neurochemical anomalies. The obtained results in RS and RS + LPS animal groups showed significant immune dysfunction, depleted monoamines, lowered ATP & NAD level, elevated serum CORT level, serum and brain tissues IL-1ß/TNF-α/IL-6, SOD activity but reduced CAT activity. Furthermore, the redox perturbation was found where significantly upregulated P-NFκB p65, Keap-1, Prx-SO3 and downregulated Nrf2, Srx1, Prx2 protein expression was seen in RS + LPS mice. The apoptosis signaling (P-ASK1, P-p38 MAPK, P-SAPK/JNK, cleaved PARP, cleaved Caspase-3, Cyto-C), autophagic impairment (p62, LC3II/I) were noticed in HIP and FC of RS and RS + LPS grouped animals. Our new findings provide a complex interplay of chemical (LPS) and physical (RS) stressors where both single dose LPS challenge and 3% DSS in drinking water (for 7 days) exaggerated chronic RS-induced inflammation, lowered redox status, increased apoptosis and dysregulated autophagy leading drastic neurobehavioral alterations in the mice.


Subject(s)
Depressive Disorder, Major , Lipopolysaccharides , Animals , Apoptosis , Autophagy , Lipopolysaccharides/toxicity , Male , Mice , Oxidation-Reduction
11.
Apoptosis ; 26(1-2): 52-70, 2021 02.
Article in English | MEDLINE | ID: mdl-33226552

ABSTRACT

Striatal neurons depends on an afferent supply of brain-derived neurotrophic factor-(BDNF) that explicitly interacts with tropomyosin receptor kinase B (TrkB) receptor and performs sundry functions including synaptic plasticity, neuronal differentiation and growth. Therefore, we aimed to scrutinize an active molecule that functions identical to BDNF in activating TrkB receptor and it's downstream targets for restoring neuronal survival in Huntington disease (HD). Data from in vitro Neuro-2a cell line showed that treatment with 7,8-dihydroxyflavone (7,8-DHF), improved 3-nitropropionic acid (3-NP) induced neuronal death by stabilizing the loss of mitochondrial membrane potential and transiently increased the activity of cAMP-response element-binding protein (CREB) and BDNF via TrkB receptor activation. Consistent with in vitro findings, our in vivo results stated that treatment with 7,8-DHF at a dose of 10 mg/kg body weight ameliorated various behavior alterations caused by 3-NP intoxication. Further histopathological and electron microscopy evidences from striatal region of 3-NP mice brain treated with 7,8-DHF showed more improved neurons with intact mitochondria and less autophagic vacuoles. Protein expression analysis of both in vitro and in vivo study showed that 7,8-DHF promotes neuronal survival through upregulation and phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt at serine-473/threonine-308). Akt phosphorylation additionally phosphorylates Bad at serine-136 and inhibits its translocation to mitochondria thereby promoting mitochondrial biogenesis, enhanced ATP production and inhibit apoptosis mediated neuronal death. These aforementioned findings help in strengthening our hypothesis and has come up with a novel neuroprotective mechanism of 7,8-DHF against 3-NP induced neuronal death.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Flavones/administration & dosage , Huntington Disease/physiopathology , Membrane Glycoproteins/agonists , Neurons/cytology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Apoptosis/drug effects , Brain-Derived Neurotrophic Factor/genetics , Cell Death/drug effects , Cell Survival , Cyclic AMP Response Element-Binding Protein/genetics , Humans , Huntington Disease/drug therapy , Huntington Disease/genetics , Huntington Disease/metabolism , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Neurons/metabolism , Neuroprotective Agents/administration & dosage , Nitro Compounds/adverse effects , Phosphatidylinositol 3-Kinase/genetics , Propionates/adverse effects , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction
12.
Neurochem Int ; 140: 104835, 2020 11.
Article in English | MEDLINE | ID: mdl-32853749

ABSTRACT

Stress and lipopolysaccharide (LPS) animal models are used for screening antidepressants and anxiolytic drugs. However, the lacunae for their combination (Restraint stress; RS and LPS) impacting inflammation, apoptosis and antioxidant signaling have not been explored. The present study investigated RS + LPS-induced neurobehavioral and neurochemical anomalies in hippocampus (HIP) and frontal cortex (FC) of mice. Furthermore, citrus-derived flavanone glycoside (Hesperidin; HSP) neuroprotective ability was also confirmed in this model. Male Balb/c mice were given RS (for 28 days) and LPS (single dose, 0.83 mg/kg, i.p.) on 28th day. RS + LPS challenge caused neurobehavioral deficits in mice as evaluated over elevated plus maze (EPM), open field test (OFT), light-dark box test, tail suspension test (TST), forced swim test (FST), sucrose preference test (SPT). Moreover, RS + LPS caused alteration via enhanced oxido-nitrosative stress, proinflammatory cytokines level (serum, HIP, FC), lower antioxidants (GSH, SOD, CAT), increased IBA-1, GFAP, TLR4/NF-κB, p38MAPK/JNK while decreased Nrf2/BDNF/HO-1 expression in HIP and FC of mice. The 21 days (8-28th day), HSP (50 and 100 mg/kg, p.o.) treatment significantly alleviated the anxiety and depressive-like behavior and reversed neurochemical, histopathological changes. HSP exerted the neuroprotective effect via its anti-inflammatory, anti-apoptotic, antioxidant and neurogenesis potential in treating psychiatric illness alone or associated with other diseases.


Subject(s)
Hesperidin/therapeutic use , NF-E2-Related Factor 2/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Stress, Psychological/drug therapy , Toll-Like Receptor 4/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Chronic Disease , Dose-Response Relationship, Drug , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Hesperidin/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred BALB C , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Restraint, Physical/adverse effects , Restraint, Physical/psychology , Stress, Psychological/metabolism , Stress, Psychological/psychology , Toll-Like Receptor 4/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...