Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 142(1): 33-43, 2023 07 06.
Article in English | MEDLINE | ID: mdl-36821766

ABSTRACT

Hematopoietic stem cells (HSCs) are assumed to be rare, infrequently dividing, long-lived cells not involved in immediate recovery after transplantation. Here, we performed unprecedented high-density clonal tracking in nonhuman primates and found long-term persisting HSC clones to actively contribute during early neutrophil recovery, and to be the main source of blood production as early as 50 days after transplantation. Most surprisingly, we observed a rapid decline in the number of unique HSC clones, while persisting HSCs expanded, undergoing symmetric divisions to create identical siblings and formed clonal pools ex vivo as well as in vivo. In contrast to the currently assumed model of hematopoietic reconstitution, we provide evidence for contribution of HSCs in short-term recovery as well as symmetric expansion of individual clones into pools. These findings provide novel insights into HSC biology, informing the design of HSC transplantation and gene therapy studies.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Animals , Clone Cells , Hematopoiesis
3.
Mol Ther Methods Clin Dev ; 24: 30-39, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34977270

ABSTRACT

Over the past decade, numerous gene-editing platforms which alter host DNA in a highly specific and targeted fashion have been described. Two notable examples are zinc finger nucleases (ZFNs), the first gene-editing platform to be tested in clinical trials, and more recently, CRISPR/Cas9. Although CRISPR/Cas9 approaches have become arguably the most popular platform in the field, the therapeutic advantages and disadvantages of each strategy are only beginning to emerge. We have established a nonhuman primate (NHP) model that serves as a strong predictor of successful gene therapy and gene-editing approaches in humans; our recent work shows that ZFN-edited hematopoietic stem and progenitor cells (HSPCs) engraft at lower levels than CRISPR/Cas9-edited cells. Here, we investigate the mechanisms underlying this difference. We show that optimized culture conditions, including defined serum-free media, augment engraftment of gene-edited NHP HSPCs in a mouse xenograft model. Furthermore, we identify intracellular RNases as major barriers for mRNA-encoded nucleases relative to preformed enzymatically active CRISPR/Cas9 ribonucleoprotein (RNP) complexes. We conclude that CRISPR/Cas9 RNP gene editing is more stable and efficient than ZFN mRNA-based delivery and identify co-delivered RNase inhibitors as a strategy to enhance the expression of gene-editing proteins from mRNA intermediates.

4.
Hum Gene Ther ; 32(1-2): 113-127, 2021 01.
Article in English | MEDLINE | ID: mdl-32741228

ABSTRACT

Hematopoietic stem and progenitor cell (HSPC)-based ex vivo gene therapy has demonstrated clinical success for X-linked severe combined immunodeficiency (SCID-X1) patients who lack a suitable donor for HSPC transplantation. Nevertheless, this form of treatment is associated with an increased risk of infectious disease complications and genotoxicity mainly due to the conditioning regimen. In addition, ex vivo gene therapy approaches require sophisticated facilities to manufacture gene-modified cells and to care for the patients after chemotherapy. Considering these impediments, we have developed an in vivo gene therapy approach to treat canine SCID-X1 after HSPC mobilization and systemic delivery of the therapeutic vector. Here, we investigated the use of the cocal envelope to pseudotype a lentiviral (LV) vector expressing a functional gammaC gene. The cocal envelope is resistant to serum inactivation compared with the commonly used vesicular stomatitis virus envelope glycoprotein (VSV-G) envelope and thus well suited for systemic delivery. Two SCID-X1 neonatal canines treated with this approach achieved long-term therapeutic immune reconstitution with no prior conditioning. Therapeutic levels of gene-corrected CD3+ T cells were demonstrated for at least 16 months, and all other correlates of T cell functionality were within normal range. Retroviral integration-site analysis demonstrated polyclonal T cell reconstitution. Comparative analysis of integration profiles of foamy viral (FV) vector and cocal LV vector after in vivo gene therapy found distinct integration-site patterns. These data demonstrate that clinically relevant and durable correction of canine SCID-X1 can be achieved with in vivo delivery of cocal LV. Since manufacturing of cocal LV is similar to VSV-G LV, this approach is easily translatable to a clinical setting, thus providing for a highly portable and accessible gene therapy platform for SCID-X1.


Subject(s)
Spumavirus , X-Linked Combined Immunodeficiency Diseases , Animals , Dogs , Genetic Therapy , Genetic Vectors/genetics , Hematopoietic Stem Cells , Humans , Lentivirus/genetics , Transduction, Genetic , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/therapy
5.
Mol Ther Methods Clin Dev ; 18: 679-691, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32802914

ABSTRACT

Hematopoietic stem cell (HSC) gene therapy has the potential to cure many genetic, malignant, and infectious diseases. We have shown in a nonhuman primate gene therapy and transplantation model that the CD34+CD90+ cell fraction was exclusively responsible for multilineage engraftment and hematopoietic reconstitution. In this study, we show the translational potential of this HSC-enriched CD34 subset for lentivirus-mediated gene therapy. Alternative HSC enrichment strategies include the purification of CD133+ cells or CD38low/- subsets of CD34+ cells from human blood products. We directly compared these strategies to the isolation of CD90+ cells using a good manufacturing practice (GMP) grade flow-sorting protocol with clinical applicability. We show that CD90+ cell selection results in about 30-fold fewer target cells in comparison to CD133+ or CD38low/- CD34+ hematopoietic stem and progenitor cell (HSPC) subsets without compromising the engraftment potential in vivo. Single-cell RNA sequencing confirmed nearly complete depletion of lineage-committed progenitor cells in CD90+ fractions compared to alternative selections. Importantly, lentiviral transduction efficiency in purified CD90+ cells resulted in up to 3-fold higher levels of engrafted gene-modified blood cells. These studies should have important implications for the manufacturing of patient-specific HSC gene therapy and gene-engineered cell products.

6.
Microbiome ; 8(1): 93, 2020 06 13.
Article in English | MEDLINE | ID: mdl-32534596

ABSTRACT

BACKGROUND: The vertebrate clade diverged into Chondrichthyes (sharks, rays, and chimeras) and Osteichthyes fishes (bony fishes) approximately 420 mya, with each group accumulating vast anatomical and physiological differences, including skin properties. The skin of Chondrichthyes fishes is covered in dermal denticles, whereas Osteichthyes fishes are covered in scales and are mucous rich. The divergence time among these two fish groups is hypothesized to result in predictable variation among symbionts. Here, using shotgun metagenomics, we test if patterns of diversity in the skin surface microbiome across the two fish clades match predictions made by phylosymbiosis theory. We hypothesize (1) the skin microbiome will be host and clade-specific, (2) evolutionary difference in elasmobranch and teleost will correspond with a concomitant increase in host-microbiome dissimilarity, and (3) the skin structure of the two groups will affect the taxonomic and functional composition of the microbiomes. RESULTS: We show that the taxonomic and functional composition of the microbiomes is host-specific. Teleost fish had lower average microbiome within clade similarity compared to among clade comparison, but their composition is not different among clade in a null based model. Elasmobranch's average similarity within clade was not different than across clade and not different in a null based model of comparison. In the comparison of host distance with microbiome distance, we found that the taxonomic composition of the microbiome was related to host distance for the elasmobranchs, but not the teleost fishes. In comparison, the gene function composition was not related to the host-organism distance for elasmobranchs but was negatively correlated with host distance for teleost fishes. CONCLUSION: Our results show the patterns of phylosymbiosis are not consistent across both fish clades, with the elasmobranchs showing phylosymbiosis, while the teleost fish are not. The discrepancy may be linked to alternative processes underpinning microbiome assemblage, including possible historical host-microbiome evolution of the elasmobranchs and convergent evolution in the teleost which filter specific microbial groups. Our comparison of the microbiomes among fishes represents an investigation into the microbial relationships of the oldest divergence of extant vertebrate hosts and reveals that microbial relationships are not consistent across evolutionary timescales. Video abstract.


Subject(s)
Elasmobranchii/microbiology , Fishes/microbiology , Integumentary System/microbiology , Metagenomics , Microbiota/genetics , Phylogeny , Symbiosis , Animals , Bacteria/genetics , Bacteria/isolation & purification
7.
Nat Commun ; 11(1): 219, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924795

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.


Subject(s)
Antigens, CD19/immunology , Immunotherapy, Adoptive , Immunotherapy , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Clonal Selection, Antigen-Mediated/immunology , Humans , Kinetics , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , Sequence Analysis, RNA , T-Lymphocytes, Cytotoxic/immunology , Transcriptome
8.
BMC Genomics ; 18(1): 915, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29183281

ABSTRACT

BACKGROUND: Microbiome/host interactions describe characteristics that affect the host's health. Shotgun metagenomics includes sequencing a random subset of the microbiome to analyze its taxonomic and metabolic potential. Reconstruction of DNA fragments into genomes from metagenomes (called metagenome-assembled genomes) assigns unknown fragments to taxa/function and facilitates discovery of novel organisms. Genome reconstruction incorporates sequence assembly and sorting of assembled sequences into bins, characteristic of a genome. However, the microbial community composition, including taxonomic and phylogenetic diversity may influence genome reconstruction. We determine the optimal reconstruction method for four microbiome projects that had variable sequencing platforms (IonTorrent and Illumina), diversity (high or low), and environment (coral reefs and kelp forests), using a set of parameters to select for optimal assembly and binning tools. METHODS: We tested the effects of the assembly and binning processes on population genome reconstruction using 105 marine metagenomes from 4 projects. Reconstructed genomes were obtained from each project using 3 assemblers (IDBA, MetaVelvet, and SPAdes) and 2 binning tools (GroopM and MetaBat). We assessed the efficiency of assemblers using statistics that including contig continuity and contig chimerism and the effectiveness of binning tools using genome completeness and taxonomic identification. RESULTS: We concluded that SPAdes, assembled more contigs (143,718 ± 124 contigs) of longer length (N50 = 1632 ± 108 bp), and incorporated the most sequences (sequences-assembled = 19.65%). The microbial richness and evenness were maintained across the assembly, suggesting low contig chimeras. SPAdes assembly was responsive to the biological and technological variations within the project, compared with other assemblers. Among binning tools, we conclude that MetaBat produced bins with less variation in GC content (average standard deviation: 1.49), low species richness (4.91 ± 0.66), and higher genome completeness (40.92 ± 1.75) across all projects. MetaBat extracted 115 bins from the 4 projects of which 66 bins were identified as reconstructed metagenome-assembled genomes with sequences belonging to a specific genus. We identified 13 novel genomes, some of which were 100% complete, but show low similarity to genomes within databases. CONCLUSIONS: In conclusion, we present a set of biologically relevant parameters for evaluation to select for optimal assembly and binning tools. For the tools we tested, SPAdes assembler and MetaBat binning tools reconstructed quality metagenome-assembled genomes for the four projects. We also conclude that metagenomes from microbial communities that have high coverage of phylogenetically distinct, and low taxonomic diversity results in highest quality metagenome-assembled genomes.


Subject(s)
Genome, Microbial , Metagenome , Sequence Analysis, DNA/methods , Algorithms , Phylogeny , Sequence Analysis, DNA/standards , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...