Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Biomater Adv ; 161: 213868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677038

ABSTRACT

Triple negative breast carcinoma (TNBC) accounts for 15-20 % of all incident breast cancers (BC) and is known to be highly invasive, has fewer treatment options, and tends to have a worse prognosis. However, due to its biological heterogeneity and diverse clinical and epidemiological behaviors, TNBC lacks a tumor-specific targeted therapy. In the present work we have developed a TNBC-specific targeted nano-delivery agent comprising of a cRGD labeled magneto-liposome (T-LMD) co-encapsulated with oleic acid coated iron oxide nanoparticles (MN-OA) and doxorubicin (Dox) in the liposome bilayer and core, respectively. T-LMD was found to show enhanced uptake and induction of ferroptotic cell death in MDA-MB-231, a TNBC model cell line. Additionally, T-LMD induced ferroptosis was found to be accompanied by release of HMGB1, an immunogenic cell death marker, suggesting its immunogenicity for augmenting the activation of anti-tumor immunity in TNBC. The strategic placement of IONPs in the liposome bilayer of T-LMD facilitates the sensitization of MDA-MB-231 cells to undergo ferroptosis; predominantly via the activation of the iron/lipid metabolism pathway, as validated by use of small molecule ferroptosis inhibitor (ferrostatin-1) and iron chelator (deferoxamine). Activation of ferroptotic cell death was also corroborated by ferroptosis specific-ultrastructural alterations in the shape/size of cellular mitochondria and cell ballooning as observed by transmission electron microscopy and bright field imaging, respectively. Thus, our ferroptosis nano-inducer (T-LMD) can efficiently kill TNBC cells via enhanced LPO and ROS generation leading to membrane damage and consequent release of LDH and HMGB1, induce mitochondrial alterations and enhanced DNA double strand breaks. Altogether, our results suggest significant implications of T-LMD for treatment of TNBC.


Subject(s)
Doxorubicin , Ferroptosis , Liposomes , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Ferroptosis/drug effects , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Liposomes/chemistry , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , HMGB1 Protein/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry
2.
PLoS One ; 18(11): e0281919, 2023.
Article in English | MEDLINE | ID: mdl-37943802

ABSTRACT

The present pilot study aims to investigate the diagnostic and prognostic efficacy of serum HSP90 beta in Head and Neck Squamous Cell Carcinoma (HNSCC) patients subjected to localized hyperthermia therapy (HT). Serum levels of HSP90 beta were measured by ELISA and its diagnostic and prognostic efficacy was determined by receiver operating characteristic curve (ROC) analysis. HNSCC patients showed significantly (P<0.05) higher serum levels of HSP90 beta (65.6±13.08 ng/ml) compared to Healthy Controls (HC: 23.5±3.8 ng/ml). No significant difference was observed in serum HSP90 beta levels between complete responders (CR) and non-responders (NR) in the chemo-radiation therapy (CRT) cohort. However, in CRT+HT cohort, CR showed significantly (P = 0.02) lower serum HSP90 beta levels at 24 h after HT (25.6±9.04 ng/ml) compared to NR (130.5±34.2 ng/ml). Youden's index values between HNSCC versus HC, CR versus NR (CRT) and CR versus NR (CRT+HT) were found to be 0.47, 0.45 and 0.80, respectively. Thus, alterations in the serum HSP90 beta after HT suggest its potential in prognosis of HT response in HNSCC patients. Elevated levels of HSP90 beta may serve as a promising diagnostic serum bio-marker for HNSCC. However, further validation in larger patient samples is needed for clinical translation of HSP90 beta as diagnostic and prognostic biomarker.


Subject(s)
Head and Neck Neoplasms , Hyperthermia, Induced , Humans , Squamous Cell Carcinoma of Head and Neck/therapy , Pilot Projects , Prognosis , Head and Neck Neoplasms/therapy , Biomarkers, Tumor
3.
RSC Adv ; 13(19): 13240-13251, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37123999

ABSTRACT

Deoxyglucose conjugated nanoparticles with persistent luminescence have shown theragnostic potential. In this study, deoxyglucose-conjugated nano-particles with persistent luminescence properties were synthesized, and their theragnostic potential was evaluated in fibrosarcoma cancer cells and a tumor model. The uptake of nano-formulation was found to be higher in mouse fibrosarcoma (WEHI-164) cells cultured in a medium without glucose. Nanoparticles showed a higher killing ability for cancer cells compared to normal cells. A significant accumulation of nanoparticles to the tumor site in mice was evident by the increased tumor/normal leg ratio, resulting in a significant decrease in tumor volume and weight. Histopathological studies showed a significant decrease in the number of dividing mitotic cells but a greater number of apoptotic/necrotic cells in nanoparticle-treated tumor tissues, which was correlated with a lower magnitude of Ki-67 expression (a proliferation marker). Consequently, our results showed the potential of our nano-formulation for cancer theragnosis.

4.
Int J Radiat Biol ; 99(6): 964-982, 2023.
Article in English | MEDLINE | ID: mdl-35559659

ABSTRACT

PURPOSE: The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS: The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.


Subject(s)
Bystander Effect , Radiation Injuries , Humans , Bystander Effect/radiation effects , DNA Damage , Cell Communication , Oxidative Stress , Radiation, Ionizing
5.
Biomater Adv ; 142: 213147, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36260957

ABSTRACT

The chemo-therapeutic efficacy of Doxorubicin (Dox), a potent anti-cancer drug used in the treatment of several solid tumors, is severely compromised by its cardio-toxicity. To overcome this shortcoming and exploit the utmost theranostic potential of nano-formulations, magnetic nanoparticles co-encapsulated with Dox and indocyanine green (ICG) in a liposomal carrier and tagged with cyclic RGD peptide were rationally designed and synthesized. These magneto-liposomes (T-LMD) showed αvß3-integrin receptor targeting and higher cyto-toxicity in several cancer cell lines (i.e. lung, breast, skin, brain and liver cancer) in combination with or without gamma radiation or magnetic hyperthermia therapy as compared to clinical liposomal nano-formulation of Dox (Lippod™). Mechanism of chemo-radio-sensitization was found to involve activation of JNK mediated pro-apoptotic signaling axis and delayed repair of DNA double strand breaks. Real time imaging of ICG labeled T-LMD suggested ~6-18 fold higher tumor accumulation of T-LMD as compared to off-target organs (kidney, liver, spleen, intestine, lungs and heart) and resulted in its higher combinatorial (chemo-radio-hyperthermia) tumor therapy efficacy as compared to Lippod™. Moreover, T-LMD showed insignificant toxicity to the heart tissue as suggested by serum levels of CK-MB, histo-pathological analysis, anti-oxidant enzyme activities (Catalase and GST) and markers of cardiac fibrosis, suggesting its potential for targeted multi-modal therapy of cancer.


Subject(s)
Magnetite Nanoparticles , Phototherapy , Phototherapy/methods , Precision Medicine , Drug Delivery Systems/methods , Cell Line, Tumor , Doxorubicin/pharmacology , Indocyanine Green , Liposomes , DNA Damage
6.
Chemosphere ; 288(Pt 2): 132557, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34653484

ABSTRACT

Hepatic disorders reported in humans exposed to Thorium-232 (Th-232) rationalizes the present study investigating the toxicological response of normal human liver cells (WRL 68) and its validation in Swiss mice. Cell count analysis of WRL 68 cells-treated with Th-nitrate (1-200 µM) estimated IC50 of ∼24 µM (at 24 h) and 35 µM (at 48 h). Analysis of cell viability (trypan blue assay) showed the IC50 of ∼172 µM. Phase contrast bright-field microscopy revealed Th-induced morphological changes and cell-released microvesicle-like structures in extracellular space. Th-estimation by ICP-MS (Inductively-coupled plasma mass-spectrometry) showed uptake of Th by cells as a function of concentration and incubation time. Employing DTPA as a chelating agent in cell harvesting solution, cell-internalized/strongly-bound Th was estimated to be ∼42% of total incubated Th. Th-uptake studies in the presence of ion-channel specific inhibitors (e.g. nifedipine, thapsigargin) revealed the role of plasma membrane calcium channels and cytoplasmic calcium in modulating the Th-uptake. Transmission electron microscopy of Th-treated cells showed cell-derived extracellular vesicles, alterations in the shape and size of nucleus and mitochondria as well as cytoplasmic inclusions. The order of Th accumulation in various sub-cellular protein fractions was found to be as cytoskeleton (43%) > cytoplasmic (15%) > chromatin (7%) > nuclear (5%) & membrane (5%). Immunofluorescence analysis of WRL 68 cells showed that Th significantly altered the expression of cytoskeleton proteins (F-actin and keratin), which was further validated in liver tissues of Swiss mice administered with Th-232. Findings herein highlight the role of calcium channels and cytoskeleton in Th-induced toxicity. Keywords: Thorium toxicity; Liver cells; Calcium channels; Sub-cellular targets, Cytoskeleton; Swiss Mice.


Subject(s)
Calcium Channels , Cytoskeletal Proteins , Animals , Humans , Liver , Mice , Thorium/toxicity
7.
Environ Pollut ; 281: 116969, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33845224

ABSTRACT

Inhalation represents the most prevalent route of exposure with Thorium-232 compounds (Th-nitrate/Th-dioxide)/Th-containing dust in real occupational scenario. The present study investigated the mechanism of Th response in normal human alveolar epithelial cells (WI26), exposed to Th-nitrate or colloidal Th-dioxide (1-100 µg/ml, 24-72 h). Assessment in terms of changes in cell morphology, cell proliferation (cell count), plasma membrane integrity (lactate dehydrogenase leakage) and mitochondrial metabolic activity (MTT reduction) showed that Th-dioxide was quantitatively more deleterious than Th-nitrate to WI26 cells. TEM and immunofluorescence analysis suggested that Th-dioxide followed a clathrin/caveolin-mediated endocytosis, however, membrane perforation/non-endocytosis seemed to be the mode of Th internalization in cells exposed to Th-nitrate. Th-estimation by ICP-MS showed significantly higher uptake of Th in cells treated with Th-dioxide than with Th-nitrate at a given concentration. Both Th-dioxide and nitrate were found to increase the level of reactive oxygen species, which seemed to be responsible for lipid peroxidation, alteration in mitochondrial membrane potential and DNA-damage. Amongst HSPs, the protein levels of HSP70 and HSP90 were affected differentially by Th-nitrate/dioxide. Specific inhibitors of ATM (KU55933) or HSP90 (17AAG) were found to increase the Th- cytotoxicity suggesting prosurvival role of these signaling molecules in rescuing the cells from Th-toxicity.


Subject(s)
Thorium Dioxide , Cell Count , DNA Damage , Epithelial Cells , Humans , Lung/chemistry , Nitrates/toxicity , Oxidative Stress , Reactive Oxygen Species , Thorium/analysis
8.
Biometals ; 33(1): 75-85, 2020 02.
Article in English | MEDLINE | ID: mdl-31897857

ABSTRACT

To understand the biological effects of Thorium-232 (Th) in human cells and animal models as well as to assess mitigation strategies for its detoxification, there is a need to develop a sensitive, specific, high-throughput and easily-implementable assay for detection and estimation of Th in biological samples. Here, we have optimized arsenazo-III dye based colorimetric assay to detect Th in biological samples. The concentration of arsenazo-III (i.e. 50 µM) was optimized, which can reliably estimate Th in the concentration range of 2.5 to 40 µM. The optimized assay can specifically detect Th without interference from other metal ions (La, Ce, U, Fe, Ca, Cu, Zn and Mn). A significant correlation (R2 = 0.999) was found between arsenazo-III-based detection of Th and total reflection X-ray fluorescence. The conditions of present assay successfully estimated Th in cell culture medium, cell harvesting (trypsin-EDTA) solution and cell lysate obtained from human liver cell culture. Moreover, for the first time, we detected Th in-situ in adherent liver cells in culture after staining with arsenazo-III. This study confirms that Th can be specifically determined in biological samples using arsenazo-III with the sensitivity, which is relevant to thorium toxicity research.


Subject(s)
Arsenazo III/chemistry , Coloring Agents/chemistry , Thorium/analysis , Colorimetry , Hep G2 Cells , Humans , Molecular Structure , Tumor Cells, Cultured
9.
Int J Radiat Biol ; 95(12): 1648-1658, 2019 12.
Article in English | MEDLINE | ID: mdl-31486717

ABSTRACT

Purpose: Non-Targeted effects (NTE), such as bystander effect (BE) and genomic instability (GI) challenge central dogma of radiation biology. Moreover, there is a need to understand its universality in different type of cells and radiation quality.Materials and method: To study BE (primary and secondary) and GI Human adult dermal fibroblast (HADF) and peripheral blood lymphocytes (PBL) were exposed to low fluence of 241Am alpha (α) particle and 6 MV X-ray. The BE was carried out by means of co-culture methodology after exposing the cells to both types of radiation and damage was measured using micronucleus assay (MN) and chromosomal aberration assay (CA) in the p1 cells while the GI was followed up in their progeny.Results: A dose-dependent increase in DNA damages (MN and CA) was observed in directly irradiated and bystander cells. The magnitude of BE was higher (6 fold) in cells co-cultured with the α-irradiated cells than that of with X-irradiated cells. Cross exposure of both cell types confirms that radiation induced BE is cell type dependent. In addition, induced DNA damage persisted for a longer population doubling in α-particle irradiated cells.Conclusion: This work adds evidence to secondary bystander response generated from primary bystander normal cells and its dependence to radiation quality.


Subject(s)
Bystander Effect/radiation effects , Genomic Instability/radiation effects , Linear Energy Transfer , Alpha Particles/adverse effects , Coculture Techniques , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , Lymphocytes/radiation effects , X-Rays/adverse effects
10.
ACS Omega ; 4(7): 11728-11736, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460279

ABSTRACT

We report the development of pH-labile ascorbic acid-coated magnetic nanocarriers (AMNCs) for effective delivery of the anticancer drug doxorubicin hydrochloride (DOX) to tumor cells. The uniqueness of this drug delivery system lies in the covalent conjugation of DOX through carbamate and hydrazone bonds, resulting in a slow and sustained drug release profile at different environmental acidities. X-ray diffraction and transmission electron microscopy analyses reveal the formation of crystalline single-phase Fe3O4 nanoparticles with an average size of 10 nm. The changes in the interfacial characteristics of the nanocarriers and the presence of organic coatings are probed by infrared spectroscopy, dynamic light scattering, zeta potential, and thermogravimetric measurements. AMNCs show high colloidal stability in aqueous and cell culture media and possess good magnetic field responsivity and protein resistance characteristics. The drug-loaded nanocarriers exhibited sustained pH-triggered release of drug molecules in acidic mediums, substantial cellular internalization, and significant toxicity toward the proliferation of mouse skin fibrosarcoma (WEHI-164), human breast cancer (MCF-7), and human lung cancer (A549) cells. However, it showed significantly lower toxicity in human normal lung (WI26VA) cells. Overall, these results suggest a pH-sensitive drug release of nanoformulations, which showed selective toxicity to tumor than normal cells.

11.
Int J Radiat Biol ; 95(6): 725-736, 2019 06.
Article in English | MEDLINE | ID: mdl-30821557

ABSTRACT

Purpose: It is important to understand the significance of alpha (α) radiation-induced bystander effects (RIBE) and its relative biological effectiveness (RBE); this is because the phenomenon is not universal and the mechanism is unclear and because the RBE is widely varying and projected to be very high. Materials and methods: Isolated lymphocytes from healthy volunteers (n = 10) were exposed to either low fluence α-particles (241Am), γ-rays (60Co), or X-rays (225 kVp and 6 MV). Co-culture methodology was employed to investigate bystander effects (BEs). Chromosomal aberrations (CA) and micronucleus (MN) formation were used to study the BE and calculated RBE. Results: Lymphocytes directly exposed to the types of radiation used showed a dose-dependent increase in the frequency of CA and MN; dose independent increases in the frequency of these chromosomal damages in co-cultured bystander cells, implies that all three types of radiation-induced a BE. The calculated RBE at the level of 5% induced aberrations varied between 9 and 20. Conclusion: The magnitude of low fluence α-particle induced RIBE is higher than in low LET (linear energy transfer) radiation. The RBE also varies depending upon the endpoints used and adds up to targeted effects. Since the endpoint of CA is considered as an important and early marker of risk prediction, the RIBE and RBE using CA as a marker are relevant for radiation protection purposes.


Subject(s)
Alpha Particles/adverse effects , Americium/adverse effects , Bystander Effect/radiation effects , Chromosome Aberrations/radiation effects , Lymphocytes/metabolism , Lymphocytes/radiation effects , Humans , Lymphocytes/cytology , Metaphase/genetics , Metaphase/radiation effects , Micronucleus Tests , X-Rays/adverse effects
12.
Biochim Biophys Acta Gen Subj ; 1863(5): 857-869, 2019 05.
Article in English | MEDLINE | ID: mdl-30794824

ABSTRACT

BACKGROUND: Nanoparticle-based therapies have emerged as a promising approach to overcome limitations of conventional chemotherapy. Present study investigates the potential of oleic acid-functionalized iron-oxide nanoparticles (MN-OA) to enhance the radiation response of fibrosarcoma tumor and elucidates its underlying mechanism. METHODS: Various cellular and molecular assays (e.g. MTT, clonogenic, cell cycle analysis, cell death, DNA damage/repair) and tumor growth kinetics were employed to investigate the mechanism of MN-OA induced radio-sensitization. RESULTS: Mouse (WEHI-164) and human (HT-1080) fibrosarcoma cells treated with MN-OA and gamma-radiation (2 Gy) showed a significant decrease in the cell proliferation. Combination treatment showed significant decrease in clonogenic survival of WEHI-164 cells and was found to induce cell cycle arrest, apoptosis and mitotic catastrophe. The mechanism of radio-sensitization was found to involve binding of MN-OA with HSP90, resulting in down-regulation of its client proteins, involved in cell cycle progression (Cyclin B1 and CDC2) and DNA-double strand break repair (e.g. RAD51 and BRCA1). Consistently, longer persistence of DNA damage in cells treated with MN-OA and radiation was observed in the form of γ-H2AX foci. The efficacy and mechanism of MN-OA-induced radio-sensitization was also validated in an immuno-competent murine fibrosarcoma model. CONCLUSION: This study reveals the key role of HSP90 in the mechanism of tumor radio-sensitization by MN-OA. GENERAL SIGNIFICANCE: Present work provides a deeper understanding about the mechanism of MN-OA-induced tumor radiosensitization, highlighting the role of HSP90 protein. In addition to diagnostic and magnetic hyperthermia abilities, present remarkable radiosensitizing activity of MN-OA would further excite the clinicians to test its anti-cancer potential.


Subject(s)
Antineoplastic Agents/pharmacology , Ferric Compounds/pharmacology , Fibrosarcoma/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Ferric Compounds/chemistry , Fibrosarcoma/metabolism , Fibrosarcoma/pathology , HSP90 Heat-Shock Proteins/metabolism , Humans , Kinetics , Mice , Radiation-Sensitizing Agents/chemistry
13.
J Hazard Mater ; 365: 952-961, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30616306

ABSTRACT

During civil, nuclear or defense activities, internal contamination of actinides in humans and mitigation of their toxic impacts are of serious concern. Considering the health hazards of thorium (Th) internalization, an attempt was made to examine the potential of ten rationally-selected compounds/formulations to decorporate Th ions from physiological systems. The Th-induced hemolysis assay with human erythrocytes revealed good potential of tiron, silibin (SLB), phytic acid (PA) and Liv.52® (L52) for Th decorporation, in comparison to diethylenetriaminepentaacetic acid, an FDA-approved decorporation drug. This was further validated by decorporation experiments with relevant human cell models (erythrocytes and liver cells) and biological fluid (blood) under pre-/post-treatment conditions, using inductively coupled plasma mass spectrometry (ICP-MS) and transmission electron microscopy (TEM). Furthermore, density functional theory-based calculations and extended X-ray absorption fine structure (EXAFS) spectroscopy confirmed the formation of Th complex by these agents. Amongst the chosen biocompatible agents, tiron, SLB, PA and L52 hold promise to enhance Th decorporation for human application.


Subject(s)
Biocompatible Materials/metabolism , Thorium/metabolism , Chelating Agents/metabolism , Humans , Liver/metabolism , Thorium/blood
14.
Int J Radiat Biol ; 94(7): 628-644, 2018 07.
Article in English | MEDLINE | ID: mdl-29775397

ABSTRACT

PURPOSE: One of the most important implications of 'Radiation Biology' research is to improve cancer radiotherapy with minimum side effects. In this regard, combination of chemotherapy with radiation has significantly improved tumor control as well as overall survival in a variety of cancers. However, this has been achieved at the cost of significant normal tissue toxicity, due to the lack of specificity of chemotherapy. Membrane-localized receptor tyrosine kinases (RTKs) have been found to play a driving role in various hallmarks of cancer. Moreover, an early successful clinical trial using RTK-antagonist (cetuximab) to improve tumor radiosensitivity has led to an advancement in this field of research. However, a comprehensive review integrating these findings of various oncogenic RTKs, from basic radiobiology-to-radiotherapy clinical trials, is lacking in literature. Therefore, the present review analyses relevant in-vitro, in-vivo, preclinical/clinical studies and postulates the concept of 'Radiation Biology of RTKs in Cancer'. CONCLUSIONS: The present review elucidates the effect of IR on various oncogenic RTKs and their mechanisms, downstream signaling, intracellular translocations, their role in the repair of radiation-induced DNA damage and post-irradiation survival. Based on the knowledge derived from RTK biology and the analysis of relevant clinical trials, this review attempts to identify radiobiological considerations, which could be implemented in future trials, combining radiotherapy with RTK-antagonist. Additionally, we identify the radiosensitizing potential of recently developed RTK-targeted nanoformulations. This review would probably change the Radiation Oncologist's view for translation of tumor-specific radiosensitization in clinic.


Subject(s)
Neoplasms/radiotherapy , Protein Kinase Inhibitors/therapeutic use , Radiation Tolerance , Receptor Protein-Tyrosine Kinases/physiology , Signal Transduction/physiology , Active Transport, Cell Nucleus , Apoptosis , Chemoradiotherapy , DNA Repair , Endocytosis , ErbB Receptors/antagonists & inhibitors , Humans , Neoplasm Invasiveness , Neoplasms/metabolism , Protein Transport/radiation effects , Receptor, IGF Type 1/antagonists & inhibitors , Tumor Escape
15.
Sci Rep ; 6: 36065, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27811960

ABSTRACT

Chronic obstructive pulmonary disease (COPD) patients are at higher risk of developing lung cancer and its metastasis, but no suitable biomarker has been reported for differential diagnosis of these patients. Levels of serum biomarkers (VEGF, IL-8, MMP-9 and MMP-2) were analyzed in these patients, which were compared with healthy donors (HD). Levels of VEGF (P < 0.005) and MMP-9 (P < 0.05) were significantly higher in COPD patients than HD. Compared to HD, a decrease in IL-8 (~8.1 folds; P < 0.0001) but an increase in MMP-9 (~1.6 folds; P < 0.05) levels were observed in the lung cancer patients. Cancer patients showed significantly (P < 0.005) lower levels of serum VEGF (1.9 folds) and IL-8 (~9 folds) than the COPD patients. VEGF level was significantly higher (2.6 folds; P < 0.0005) in metastatic than non-metastatic cancer patients. However, MMP-2 didn't show significant variation in these patients. The Youden's index (YI) values for lung cancer diagnosis in HD using IL-8 was 0.55 with 83.3% overall accuracy. VEGF was able to diagnose COPD in HD with better YI (0.38) and overall accuracy (70.6%). IL-8 was able to diagnose cancer in COPD patients and HD with YI values of 0.35, 0.55 with 71% and 83.3% overall accuracy, respectively.


Subject(s)
Interleukin-8/blood , Lung Neoplasms/blood , Lung Neoplasms/diagnosis , Matrix Metalloproteinase 9/blood , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Vascular Endothelial Growth Factor A/blood , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Case-Control Studies , Diagnosis, Differential , Female , Humans , Lung Neoplasms/secondary , Male , Matrix Metalloproteinase 2/blood , Middle Aged
16.
Int J Radiat Biol ; 92(4): 173-86, 2016.
Article in English | MEDLINE | ID: mdl-26917443

ABSTRACT

PURPOSE: Radionuclide therapy (RNT) is a rapidly growing area of clinical nuclear medicine, wherein radionuclides are employed to deliver cytotoxic dose of radiation to the diseased cells/tissues. During RNT, radionuclides are either directly administered or delivered through biomolecules targeting the diseased site. RNT has been clinically used for diverse range of diseases including cancer, which is the focus of the review. CONCLUSIONS: The major emphasis in RNT has so far been given towards developing peptides/antibodies and other molecules to conjugate a variety of therapeutic radioisotopes for improved targeting/delivery of radiation dose to the tumor cells. Despite that, many of the RNT approaches have not achieved their desired therapeutic success probably due to poor knowledge about complex and dynamic (i) fate of radiolabeled molecules; (ii) radiation dose delivered; (iii) cellular heterogeneity in tumor mass; and (iv) cellular radiobiological response. Based on understanding gathered during recent years, it may be stated that besides the absorbed dose, the net radiobiological response of tumor/normal cells also determines the clinical response of radiotherapeutic modalities including RNT. The radiosensitivity of tumor/normal cells is governed by radiobiological phenomenon such as radiation-induced bystander effect, genomic instability, adaptive response and low dose hyper-radiosensitivity. These concepts have been well investigated in the context of external beam radiotherapy, but their clinical implications during RNT have received meagre attention. In this direction, a few studies performed using in vitro and in vivo models envisage the possibilities of exploiting the radiobiological knowledge for improved therapeutic outcome of RNT.


Subject(s)
Models, Biological , Neoplasms/physiopathology , Neoplasms/radiotherapy , Radiobiology/methods , Radioisotopes/therapeutic use , Radiotherapy, Computer-Assisted/methods , Apoptosis/radiation effects , Cell Survival/radiation effects , DNA Damage , Dose-Response Relationship, Radiation , Neoplasms/pathology , Radiation Dosage , Radiopharmaceuticals/therapeutic use
17.
Biochimie ; 123: 117-29, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26821345

ABSTRACT

Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of ß-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides.


Subject(s)
Actinoid Series Elements/chemistry , Lanthanoid Series Elements/chemistry , Serum Albumin/chemistry , Circular Dichroism , Humans , Protein Conformation , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
18.
J Hazard Mater ; 307: 281-93, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26799219

ABSTRACT

Due to increasing use of lanthanides/actinides in nuclear and civil applications, understanding the impact of these metal ions on human health and environment is a growing concern. Hemoglobin (Hb), which occurs in all the kingdom of living organism, is the most abundant protein in human blood. In present study, effect of lanthanides and actinides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] on the structure and function of Hb has been investigated. Results showed that these metal ions, except Ce(IV) interacted with carbonyl and amide groups of Hb, which resulted in the loss of its alpha-helix conformation. However, beyond 75µM, these ions affected heme moiety. Metal-heme interaction was found to affect oxygen-binding of Hb, which seems to be governed by their closeness with the charge-to-ionic-radius ratio of iron(III). Consistently, Ce(IV) being closest to iron(III), exhibited a greater effect on heme. Binding constant and binding stoichiometry of Th(IV) were higher than that of U(VI). Experiments using aquatic midge Chironomus (possessing human homologous Hb) and human blood, further validated metal-Hb interaction and associated toxicity. Thus, present study provides a biochemical basis to understand the actinide/lanthanide-induced interference in heme, which may have significant implications for the medical and environmental management of lanthanides/actinides toxicity.


Subject(s)
Cerium/toxicity , Hemoglobins/metabolism , Lanthanum/toxicity , Thorium/toxicity , Uranium/toxicity , Animals , Chironomidae , Ecotoxicology , Humans , Larva , Oxygen/metabolism
19.
J Cancer Res Ther ; 12(3): 1144-1152, 2016.
Article in English | MEDLINE | ID: mdl-28054526

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) are increasingly being realized to play a significant role in the mechanism of chemo-, radio-resistance, and metastasis of cancer. However, studies for spectral markers of CSCs using Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy are limited in the literature. MATERIALS AND METHODS: In the present study, CSCs obtained from single cell assay of human lung adenocarcinoma (A549) cells were characterized using CD44+/CD24-/low phenotype expression, Hoechst 33342 dye efflux assay, and expression of stemness genes. Spectral changes in cancer cells and clones enriched with CSCs were studied by FT-IR and CD spectroscopy. RESULTS: The changes in FT-IR spectra of clones enriched with CSCs showed the difference in the secondary protein structure as compared to nonstem cancer cells. Moreover, A549 clone cells showed higher C-O band of carbohydrates and deoxyribose ring vibrations of Z-form of DNA. These results were further corroborated with CD spectroscopy that showed increased alpha helix proteins and difference in DNA conformation in clones enriched with CSCs. FT-IR studies also showed higher imidazole-metal interactions in clones enriched with CSCs. These results are in agreement with higher activity of one of the metalloproteins that is, superoxide dismutase in clones enriched with CSCs and their increased radioresistance. CONCLUSIONS AND GENERAL SIGNIFICANCE: Overall, these observations provide novel FT-IR and CD spectroscopy signatures in A549 clones enriched with CSCs, which may have implications in the quantifying magnitude of CSCs as prognostic markers in cancer therapy.


Subject(s)
Adenocarcinoma/chemistry , Adenocarcinoma/metabolism , Lung Neoplasms/chemistry , Lung Neoplasms/metabolism , Neoplastic Stem Cells/chemistry , Neoplastic Stem Cells/metabolism , Spectrum Analysis , Adenocarcinoma of Lung , Biomarkers , Cell Line, Tumor , Cell Survival/radiation effects , Circular Dichroism , Humans , Neoplastic Stem Cells/radiation effects , Oxidation-Reduction , Radiation Tolerance , Single-Cell Analysis , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis/methods , Superoxide Dismutase/metabolism
20.
Int J Hyperthermia ; 31(8): 909-19, 2015.
Article in English | MEDLINE | ID: mdl-26416812

ABSTRACT

PURPOSE: We have evaluated the hyperthermia efficacy of oleic acid-functionalised Fe(3)O(4) magnetic nanoparticles (MN-OA) under in vivo conditions and elucidated the underlying mechanism of tumour growth inhibition. MATERIALS AND METHODS: The efficacy and mechanism of tumour growth inhibition by MN-OA-mediated magnetic hyperthermia therapy (MHT) was evaluated in a murine fibrosarcoma tumour model (WEHI-164) using techniques such as TUNEL assay, Western blotting (WB), immunofluorescence (IF) staining and histopathological examination. In addition, bio-distribution of MN-OA in tumour/other target organs and its effect on normal organ function were studied by Prussian blue staining and serum biochemical analysis, respectively. RESULTS: MN-OA-induced MHT resulted in significant inhibition of tumour growth as determined by measurement of tumour volume, as well as by in vivo imaging of tumour derived from luciferase-transfected WEHI-164 cells. Histopathology analysis showed presence of severe apoptosis and reduced tumour cells proliferation, which was further confirmed by TUNEL assay, reduced expression of Ki-67 and enhanced level of cleaved caspase-3, in tumours treated with MHT. Moreover, expression of heat stress marker, Hsp90 and its client protein, AKT/PKB was reduced by ∼50 and 80%, respectively, in tumours treated with MHT as studied by WB and IF staining. Serum analysis suggested insignificant toxicity of MN-OA (in terms of liver and kidney function), which was further correlated with minimal accumulation of MN-OA in target organs. CONCLUSIONS: These results suggest the involvement of apoptosis and Hsp90/AKT modulation in MN-OA-mediated MHT-induced tumour growth inhibition.


Subject(s)
Fibrosarcoma/drug therapy , Hyperthermia, Induced , Magnetite Nanoparticles/administration & dosage , Animals , Apoptosis/drug effects , Cell Line, Tumor , Combined Modality Therapy , Female , Fibrosarcoma/metabolism , HSP90 Heat-Shock Proteins/metabolism , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Magnetite Nanoparticles/therapeutic use , Mice, Inbred BALB C , Proto-Oncogene Proteins c-akt/metabolism , Spleen/metabolism , Tissue Distribution , Tumor Burden/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...