Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
ACS Macro Lett ; 11(3): 317-322, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35575357

ABSTRACT

The COVID-19 pandemic has highlighted the need for innovative biosensing, diagnostic, and surveillance platforms. Here we report that glycosylated, polymer-stabilized, gold nanorods can bind the SARS-CoV-2 spike protein and show correlation to the presence of SARS-CoV-2 in primary COVID-19 clinical samples. Telechelic polymers were prepared by reversible addition-fragmentation chain-transfer polymerization, enabling the capture of 2,3-sialyllactose and immobilization onto gold nanorods. Control experiments with a panel of lectins and a galactosamine-terminated polymer confirmed the selective binding. The glycosylated rods were shown to give dose-dependent responses against recombinant truncated SARS-CoV-2 spike protein, and the responses were further correlated using primary patient swab samples. The essentiality of the anisotropic particles for reducing the background interference is demonstrated. This highlights the utility of polymer tethering of glycans for plasmonic biosensors of infection.


Subject(s)
COVID-19 , Nanotubes , COVID-19/diagnosis , Gold , Humans , Pandemics , Polymers , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
2.
ACS Sens ; 6(10): 3696-3705, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34634204

ABSTRACT

The COVID-19 pandemic, and future pandemics, require diagnostic tools to track disease spread and guide the isolation of (a)symptomatic individuals. Lateral-flow diagnostics (LFDs) are rapid and of lower cost than molecular (genetic) tests, with current LFDs using antibodies as their recognition units. Herein, we develop a prototype flow-through device (related, but distinct to LFDs), utilizing N-acetyl neuraminic acid-functionalized, polymer-coated, gold nanoparticles as the detection/capture unit for SARS-COV-2, by targeting the sialic acid-binding site of the spike protein. The prototype device can give rapid results, with higher viral loads being faster than lower viral loads. The prototype's effectiveness is demonstrated using spike protein, lentiviral models, and a panel of heat-inactivated primary patient nasal swabs. The device was also shown to retain detection capability toward recombinant spike proteins from several variants (mutants) of concern. This study provides the proof of principle that glyco-lateral-flow devices could be developed to be used in the tracking monitoring of infectious agents, to complement, or as alternatives to antibody-based systems.


Subject(s)
COVID-19 , Metal Nanoparticles , Gold , Humans , Pandemics , Polysaccharides , SARS-CoV-2
3.
Endocrine ; 60(1): 175-184, 2018 04.
Article in English | MEDLINE | ID: mdl-29396841

ABSTRACT

AIM: To explore the metabolic phenotype of obesity-related secondary hypogonadism (SH) in men pre-replacement and post-replacement therapy with long-acting intramuscular (IM) testosterone undecanoate (TU). METHODS: A prospective observational pilot study on metabolic effects of TU IM in male obesity-related SH (hypogonadal [HG] group, n = 13), including baseline comparisons with controls (eugonadal [EG] group, n = 15). Half the subjects (n = 7 in each group) had type 2 diabetes mellitus (T2D). Baseline metabolic assessment on Human Metabolism Research Unit: fasting blood samples; BodPod (body composition), and; whole-body indirect calorimetry. The HG group was treated with TU IM therapy for 6-29 months (mean 14.8-months [SD 8.7]), and assessment at the Human Metabolism Research Unit repeated. T-test comparisons were performed between baseline and follow-up data (HG group), and between baseline data (HG and EG groups). Data reported as mean (SD). RESULTS: Overall, TU IM therapy resulted in a statistically significant improvement in HbA1C (9 mmol/mol, P = 0.03), with 52% improvement in HOMA%B. Improvement in glycaemic control was driven by the HG subgroup with T2D, with 18 mmol/mol [P = 0.02] improvement in HbA1C. Following TU IM therapy, there was a statistically significant reduction in fat mass (3.5 Kg, P = 0.03) and increase in lean body mass (2.9 kg, P = 0.03). Lipid profiles and energy expenditure were unchanged following TU IM therapy. Comparisons between baseline data for HG and EG groups were equivalent apart from differences in testosterone, SHBG and basal metabolic rate (BMR). CONCLUSION: In men with obesity-related SH (including a subgroup with T2D), TU IM therapy improved glycaemic control, beta cell function, and body composition.


Subject(s)
Hormone Replacement Therapy , Hypogonadism/metabolism , Obesity/metabolism , Testosterone/analogs & derivatives , Adult , Blood Glucose , Body Composition/drug effects , Glycated Hemoglobin/metabolism , Humans , Hypogonadism/etiology , Injections, Intramuscular , Male , Middle Aged , Obesity/complications , Phenotype , Pilot Projects , Prospective Studies , Testosterone/administration & dosage , Testosterone/therapeutic use , Treatment Outcome
4.
Ann Clin Biochem ; 53(6): 654-662, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26748104

ABSTRACT

Background Detection of disease-associated mutations in patients with familial hypercholesterolaemia is crucial for early interventions to reduce risk of cardiovascular disease. Screening for these mutations represents a methodological challenge since more than 1200 different causal mutations in the low-density lipoprotein receptor has been identified. A number of methodological approaches have been developed for screening by clinical diagnostic laboratories. Methods Using primers targeting, the low-density lipoprotein receptor, apolipoprotein B, and proprotein convertase subtilisin/kexin type 9, we developed a novel Ion Torrent-based targeted re-sequencing method. We validated this in a West Midlands-UK small cohort of 58 patients screened in parallel with other mutation-targeting methods, such as multiplex polymerase chain reaction (Elucigene FH20), oligonucleotide arrays (Randox familial hypercholesterolaemia array) or the Illumina next-generation sequencing platform. Results In this small cohort, the next-generation sequencing method achieved excellent analytical performance characteristics and showed 100% and 89% concordance with the Randox array and the Elucigene FH20 assay. Investigation of the discrepant results identified two cases of mutation misclassification of the Elucigene FH20 multiplex polymerase chain reaction assay. A number of novel mutations not previously reported were also identified by the next-generation sequencing method. Conclusions Ion Torrent-based next-generation sequencing can deliver a suitable alternative for the molecular investigation of familial hypercholesterolaemia patients, especially when comprehensive mutation screening for rare or unknown mutations is required.


Subject(s)
Apolipoproteins B/genetics , High-Throughput Nucleotide Sequencing/methods , Hyperlipoproteinemia Type II/diagnosis , Mutation , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Adult , Base Sequence , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Female , Gene Expression , Genetic Testing , Humans , Hyperlipoproteinemia Type II/genetics , Male , Middle Aged , Multiplex Polymerase Chain Reaction , Oligonucleotide Array Sequence Analysis , United Kingdom
5.
J Appl Lab Med ; 1(2): 109-118, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-33626794

ABSTRACT

BACKGROUND: A key objective of the UK National Institute for Health and Care Excellence (NICE) pathway for diagnosis of familial hypercholesterolemia (FH) is the identification of affected relatives of index cases through cascade screening. At present, there is no systematic appraisal of available methodological options to identify the appropriate diagnostic testing protocol that would allow cost-effective cascade genetic screening. The majority of FH-causing mutations identified in the LDL receptor (LDLR) or apolipoprotein B (APOB) genes are single-nucleotide changes. This pattern of mutations suggests that PCR methods using melting curve-based genotyping might offer a convenient methodological approach for screening relatives. METHODS: We developed and validated one-tube PCR methods for the mutations APOB c.10580G>A (p.Arg3527Gln), LDLR c.1474G>A (p.Asp492Asn), and c.2054C>T (p.Pro685Leu) and 3 novel LDLR mutations identified in the Coventry and Warwickshire population: LDLR c.1567G>C (p.Val523Leu), c.487dupC (p.Gln163Profs17), and c.647G>C (p.Cys216Ser). RESULTS: These methods successfully amplified target sequence from genomic DNA extracted from either peripheral blood or saliva. They also demonstrated acceptable analytical performance characteristics (specificity of amplification, repeatability, and reproducibility) over a wide range of DNA concentrations and purity. This approach was used for cascade testing of relatives of index FH cases with confirmed mutations and identified family members with high plasma LDL cholesterol as heterozygous for disruptive alleles. CONCLUSIONS: Our study generates proof-of-concept evidence of methods suitable for detecting single nucleotide substitutions and insertions that can deliver reliable, easy, low-cost, and rapid family screening of FH patients and can be adopted by nonspecialist molecular diagnostic laboratories.

SELECTION OF CITATIONS
SEARCH DETAIL
...