Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biophys J ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678367

ABSTRACT

Bupropion is an atypical antidepressant and smoking cessation drug that causes adverse effects such as insomnia, irritability, and anxiety. Bupropion inhibits dopamine and norepinephrine reuptake transporters and eukaryotic cation-conducting pentameric ligand-gated ion channels, such as nicotinic acetylcholine and serotonin type 3A receptors, at clinically relevant concentrations. Here, we demonstrate that bupropion also inhibits a prokaryotic homolog of pentameric ligand-gated ion channels, the Gloeobacter violaceus ligand-gated ion channel (GLIC). Using the GLIC as a model, we used molecular docking to predict binding sites for bupropion. Bupropion was found to bind to several sites within the transmembrane domain, with the predominant site being localized to the interface between transmembrane segments M1 and M3 of two adjacent subunits. Residues W213, T214, and W217 in the first transmembrane segment, M1, and F267 and I271 in the third transmembrane segment, M3, most frequently reside within a 4 Å distance from bupropion. We then used single amino acid substitutions at these positions and two-electrode voltage-clamp recordings to determine their impact on bupropion inhibitory effects. The substitution T214F alters bupropion potency by shifting the half-maximal inhibitory concentration to a 13-fold higher value compared to wild-type GLIC. Residue T214 is found within a previously identified binding pocket for neurosteroids and lipids in the GLIC. This intersubunit binding pocket is structurally conserved and almost identical to a binding pocket described for neurosteroids in γ-aminobutyric acid type A receptors. Our data thus suggest that the T214 that lines a previously identified lipophilic binding pocket in GLIC and γ-aminobutyric acid type A receptors is also a modulatory site for bupropion interaction with the GLIC.

2.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873398

ABSTRACT

Bupropion is an atypical antidepressant and smoking cessation drug which causes adverse effects such as insomnia, irritability, and anxiety. Bupropion inhibits dopamine and norepinephrine reuptake transporters and eukaryotic cation-conducting pentameric ligand-gated ion channels (pLGICs), such as nicotinic acetylcholine (nACh) and serotonin type 3A (5-HT3A) receptors, at clinically relevant concentrations. However, the binding sites and binding mechanisms of bupropion are still elusive. To further understand the inhibition of pLGICs by bupropion, in this work, using a prokaryotic homologue of pLGICs as a model, we examined the inhibitory potency of bupropion in Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated ion channel. Bupropion inhibited proton-induced currents in GLIC with an inhibitory potency of 14.9 ± 2.0 µM, comparable to clinically attainable concentrations previously shown to also modulate eukaryotic pLGICs. Using single amino acid substitutions in GLIC and two-electrode voltage-clamp recordings, we further determined a binding site for bupropion in the lower third of the first transmembrane segment M1 at residue T214. The sidechain of M1 T214 together with additional residues of M1 and also of M3 of the adjacent subunit have previously been shown to contribute to binding of other lipophilic molecules like allopregnanolone and pregnanolone.

3.
Biophys J ; 118(4): 934-943, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31870537

ABSTRACT

The serotonin type 3A (5-HT3A) receptor is a homopentameric cation-selective member of the pentameric ligand-gated ion channel (pLGIC) superfamily. Members of this superfamily assemble from five subunits, each of which consists of three domains: extracellular (ECD), transmembrane (TMD), and intracellular domain (ICD). Previously, we have demonstrated that the 5-HT3A-ICD is required for the interaction between 5-HT3A and the chaperone protein resistance to inhibitors of choline esterase (RIC-3). Additionally, we have shown that 5-HT3A-ICD fused to maltose-binding protein (MBP) directly interacts with RIC-3, without the involvement of other protein(s). To elucidate the molecular determinants of this interaction, we developed different MBP-fused 5-HT3A-ICD constructs by deleting large segments of its amino acid sequence. We expressed seven engineered ICDs in Escherichia coli and purified them to homogeneity. Using a RIC-3 affinity pull-down assay, the interaction between MBP-5HT3A-ICD constructs and RIC-3 was investigated. In summary, we identify a 24-amino-acid-long segment of the 5-HT3A-ICD as a molecular determinant for the interaction between the 5-HT3A-ICD and RIC-3.


Subject(s)
Receptors, Serotonin, 5-HT3 , Serotonin , Amino Acid Sequence , Escherichia coli/genetics , Escherichia coli/metabolism , Molecular Chaperones/genetics , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism
4.
J Gen Physiol ; 151(9): 1135-1145, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31409663

ABSTRACT

Serotonin type 3 receptors (5-HT3Rs) are cation-conducting pentameric ligand-gated ion channels and members of the Cys-loop superfamily in eukaryotes. 5-HT3Rs are found in the peripheral and central nervous system, and they are targets for drugs used to treat anxiety, drug dependence, and schizophrenia, as well as chemotherapy-induced and postoperative nausea and emesis. Decades of research of Cys-loop receptors have identified motifs in both the extracellular and transmembrane domains that mediate pentameric assembly. Those efforts have largely ignored the most diverse domain of these channels, the intracellular domain (ICD). Here we identify molecular determinants within the ICD of serotonin type 3A (5-HT3A) subunits for pentameric assembly by first identifying the segments contributing to pentamerization using deletion constructs of, and finally by making defined amino acid substitutions within, an isolated soluble ICD. Our work provides direct experimental evidence for the contribution of three intracellular arginines, previously implicated in governing the low conductance of 5-HT3ARs, in structural features such as pentameric assembly.


Subject(s)
Arginine/chemistry , Receptors, Serotonin, 5-HT3/chemistry , Amino Acid Sequence , Amino Acid Substitution , Animals , Escherichia coli , Gene Expression Regulation , Mice , Protein Conformation , Protein Domains , Protein Engineering , Protein Folding
5.
Protein Expr Purif ; 153: 45-52, 2019 01.
Article in English | MEDLINE | ID: mdl-30130580

ABSTRACT

The main principles of higher-order protein oligomerization are elucidated by many structural and biophysical studies. An astonishing number of proteins self-associate to form dimers or higher-order quaternary structures which further interact with other biomolecules to elicit complex cellular responses. In this study, we describe a simple and convenient approach to determine the oligomeric state of purified protein complexes that combines implementation of a novel form of clear-native gel electrophoresis and size exclusion chromatography in line with multi-angle light scattering. Here, we demonstrate the accuracy of this ensemble approach by characterizing the previously established pentameric state of the intracellular domain of serotonin type 3A (5-HT3A) receptors.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Maltose-Binding Proteins/chemistry , Receptors, Serotonin, 5-HT3/chemistry , Recombinant Fusion Proteins/chemistry , Cloning, Molecular , Densitometry , Electrophoresis, Polyacrylamide Gel/instrumentation , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Light , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Protein Interaction Domains and Motifs , Protein Multimerization , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Scattering, Radiation
6.
Neuropharmacology ; 113(Pt A): 89-99, 2017 02.
Article in English | MEDLINE | ID: mdl-27671323

ABSTRACT

The FDA-approved antidepressant and smoking cessation drug bupropion is known to inhibit dopamine and norepinephrine reuptake transporters, as well as nicotinic acetylcholine receptors (nAChRs) which are cation-conducting members of the Cys-loop superfamily of ion channels, and more broadly pentameric ligand-gated ion channels (pLGICs). In the present study, we examined the ability of bupropion and its primary metabolite hydroxybupropion to block the function of cation-selective serotonin type 3A receptors (5-HT3ARs), and further characterized bupropion's pharmacological effects at these receptors. Mouse 5-HT3ARs were heterologously expressed in HEK-293 cells or Xenopus laevis oocytes for equilibrium binding studies. In addition, the latter expression system was utilized for functional studies by employing two-electrode voltage-clamp recordings. Both bupropion and hydroxybupropion inhibited serotonin-gated currents from 5-HT3ARs reversibly and dose-dependently with inhibitory potencies of 87 µM and 112 µM, respectively. Notably, the measured IC50 value for hydroxybupropion is within its therapeutically-relevant concentrations. The blockade by bupropion was largely non-competitive and non-use-dependent. Unlike its modulation at cation-selective pLGICs, bupropion displayed no significant inhibition of the function of anion-selective pLGICs. In summary, our results demonstrate allosteric blockade by bupropion of the 5-HT3AR. Importantly, given the possibility that bupropion's major active metabolite may achieve clinically relevant concentrations in the brain, our novel findings delineate a not yet identified pharmacological principle underlying its antidepressant effect.


Subject(s)
Antidepressive Agents, Second-Generation/pharmacokinetics , Bupropion/analogs & derivatives , Bupropion/pharmacokinetics , Receptors, Serotonin, 5-HT3/metabolism , Serotonin 5-HT3 Receptor Antagonists/pharmacokinetics , Serotonin/metabolism , Allosteric Regulation , Animals , Dose-Response Relationship, Drug , Granisetron/pharmacokinetics , HEK293 Cells , Humans , Mice , Oocytes/drug effects , Oocytes/metabolism , Serotonin/analysis , Serotonin/pharmacokinetics , Xenopus laevis
7.
Sci Rep ; 6: 23921, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27045630

ABSTRACT

In spite of extensive efforts over decades an experimentally-derived structure of full-length eukaryotic pentameric ligand-gated ion channels (pLGICs) is still lacking. These pharmaceutically highly-relevant channels contain structurally well-conserved and characterized extracellular and transmembrane domains. The intracellular domain (ICD), however, has been orphaned in structural studies based on the consensus assumption of being largely disordered. In the present study, we demonstrate for the first time that the serotonin type 3A (5-HT3A) ICD assembles into stable pentamers in solution in the absence of the other two domains, thought to be the drivers for oligomerization. Additionally, the soluble 5-HT3A-ICD construct interacted with the protein RIC-3 (resistance to inhibitors of cholinesterase). The interaction provides evidence that the 5-HT3A-ICD is not only required but also sufficient for interaction with RIC-3. Our results suggest the ICD constitutes an oligomerization domain. This novel role significantly adds to its known contributions in receptor trafficking, targeting, and functional fine-tuning. The innate diversity of the ICDs with sizes ranging from 50 to 280 amino acids indicates new methodologies need to be developed to determine the structures of these domains. The use of soluble ICD proteins that we report in the present study constitutes a useful approach to address this gap.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Receptors, Serotonin, 5-HT3/chemistry , Animals , Cross-Linking Reagents/chemistry , Escherichia coli/metabolism , Glutaral/chemistry , Humans , Ligands , Mice , Protein Binding , Protein Domains , Protein Structure, Quaternary
8.
J Neurochem ; 137(4): 528-38, 2016 05.
Article in English | MEDLINE | ID: mdl-26875553

ABSTRACT

Pentameric ligand-gated ion channels (pLGIC) are expressed in both excitable and non-excitable cells that are targeted by numerous clinically used drugs. Assembly from five identical or homologous subunits yields homo- or heteromeric pentamers, respectively. The protein known as Resistance to Inhibitors of Cholinesterase (RIC-3) was identified to interfere with assembly and functional maturation of pLGICs. We have shown previously for serotonin type 3A homopentamers (5-HT3A ) that the interaction with RIC-3 requires the intracellular domain (ICD) of this pLGIC. After expression in Xenopus laevis oocytes RIC-3 attenuated serotonin-induced currents in 5-HT3A wild-type channels, but not in functional 5-HT3A glvM3M4 channels that have the 115-amino acid ICD replaced by a heptapeptide. In complementary experiments we have shown that engineering the Gloeobacter violaceus ligand-gated ion channel (GLIC) to contain the 5-HT3A -ICD confers sensitivity to RIC-3 in oocytes to otherwise insensitive GLIC. In this study, we identify endogenous RIC-3 protein expression in X. laevis oocytes. We purified RIC-3 to homogeneity after expression in Echericia coli. By using heterologously over-expressed and purified RIC-3 and the chimera consisting of the 5-HT3A -ICD and the extracellular and transmembrane domains of GLIC in pull-down experiments, we demonstrate a direct and specific interaction between the two proteins. This result further underlines that the domain within 5-HT3 A R that mediates the interaction with RIC-3 is the ICD. Importantly, this is the first experimental evidence that the interaction between 5-HT3 A R-ICD and RIC-3 does not require other proteins. In addition, we demonstrate that the pentameric assembly of the GLIC-5-HT3A -ICD chimera interacts with RIC-3. We hypothesized that pentameric ligand-gated ion channels (pLGICs) associate directly with the chaperone protein RIC-3 (resistance to inhibitors of cholinesterase type 3), and that the interaction does not require other protein factors. We found that the two proteins indeed interact directly, that the pLGIC intracellular domain is required for the effect, and that pLGICs in their pentameric form associate with RIC-3. These results provide the basis for future studies aimed at investigating which motifs provide the interaction surfaces, and at delineating the mechanism(s) of RIC-3 modulation of functional pLGIC surface expression.


Subject(s)
Cytoplasm/genetics , Cytoplasm/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism , Animals , Humans , Oocytes , Protein Binding/physiology , Xenopus laevis
9.
Indian J Crit Care Med ; 19(10): 574-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26628820
10.
Biochemistry ; 54(16): 2670-2682, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25861708

ABSTRACT

Pentameric ligand-gated ion channels (pLGICs), also called Cys-loop receptors in eukaryotic superfamily members, play diverse roles in neurotransmission and serve as primary targets for many therapeutic drugs. Structural studies of full-length eukaryotic pLGICs have been challenging because of glycosylation, large size, pentameric assembly, and hydrophobicity. X-ray structures of prokaryotic pLGICs, including the Gloeobacter violaceus LGIC (GLIC) and the Erwinia chrysanthemi LGIC (ELIC), and truncated eukaryotic pLGICs have significantly improved and complemented the understanding of structural details previously obtained with acetylcholine-binding protein and Torpedo nicotinic acetylcholine receptors. Prokaryotic pLGICs share their overall structural features with eukaryotic pLGICs for the ligand-binding extracellular and channel-lining transmembrane domains. The large intracellular domain (ICD) is present only in eukaryotic members and is characterized by a low level of sequence conservation and significant variability in length (50-250 amino acids), making the ICD a potential target for the modulation of specific pLGIC subunits. None of the structures includes a complete ICD. Here, we created chimeras by adding the ICD of cation-conducting (nAChR-α7) and anion-conducting (GABAρ1, Glyα1) eukaryotic homopentamer-forming pLGICs to GLIC. GLIC-ICD chimeras assemble into pentamers to form proton-gated channels, as does the parent GLIC. Additionally, the sensitivity of the chimeras toward modulation of functional maturation by chaperone protein RIC-3 is preserved as in those of the parent eukaryotic channels. For a previously described GLIC-5HT3A-ICD chimera, we now provide evidence of its successful large-scale expression and purification to homogeneity. Overall, the chimeras provide valuable tools for functional and structural studies of eukaryotic pLGIC ICDs.


Subject(s)
Bacterial Proteins/chemistry , Dickeya chrysanthemi/chemistry , Fish Proteins/chemistry , Recombinant Fusion Proteins/chemistry , Torpedo , alpha7 Nicotinic Acetylcholine Receptor/chemistry , Animals , Bacterial Proteins/genetics , Dickeya chrysanthemi/genetics , Fish Proteins/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , alpha7 Nicotinic Acetylcholine Receptor/genetics
11.
J Biol Chem ; 288(16): 11294-303, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23463505

ABSTRACT

Although the activity of the nicotinic acetylcholine receptor (nAChR) is exquisitely sensitive to its membrane environment, the underlying mechanisms remain poorly defined. The homologous prokaryotic pentameric ligand-gated ion channel, Gloebacter ligand-gated ion channel (GLIC), represents an excellent model for probing the molecular basis of nAChR sensitivity because of its high structural homology, relative ease of expression, and amenability to crystallographic analysis. We show here that membrane-reconstituted GLIC exhibits structural and biophysical properties similar to those of the membrane-reconstituted nAChR, although GLIC is substantially more thermally stable. GLIC, however, does not possess the same exquisite lipid sensitivity. In particular, GLIC does not exhibit the same propensity to adopt an uncoupled conformation where agonist binding is uncoupled from channel gating. Structural comparisons provide insight into the chemical features that may predispose the nAChR to the formation of an uncoupled state.


Subject(s)
Bacteria , Bacterial Proteins , Ion Channel Gating/physiology , Ion Channels , Bacteria/chemistry , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ion Channels/chemistry , Ion Channels/genetics , Ion Channels/metabolism , Protein Stability , Protein Structure, Quaternary , Structural Homology, Protein
12.
Biochemistry ; 51(12): 2425-35, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22394379

ABSTRACT

Bupropion, a clinically used antidepressant and smoking-cessation drug, acts as a noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs). To identify its binding site(s) in nAChRs, we developed a photoreactive bupropion analogue, (±)-2-(N-tert-butylamino)-3'-[(125)I]-iodo-4'-azidopropiophenone (SADU-3-72). Based on inhibition of [(125)I]SADU-3-72 binding, SADU-3-72 binds with high affinity (IC(50) = 0.8 µM) to the Torpedo nAChR in the resting (closed channel) state and in the agonist-induced desensitized state, and bupropion binds to that site with 3-fold higher affinity in the desensitized (IC(50) = 1.2 µM) than in the resting state. Photolabeling of Torpedo nAChRs with [(125)I]SADU-3-72 followed by limited in-gel digestion of nAChR subunits with endoproteinase Glu-C established the presence of [(125)I]SADU-3-72 photoincorporation within nAChR subunit fragments containing M1-M2-M3 helices (αV8-20K, ßV8-22/23K, and γV8-24K) or M1-M2 helices (δV8-14). Photolabeling within ßV8-22/23K, γV8-24K, and δV8-14 was reduced in the desensitized state and inhibited by ion channel blockers selective for the resting (tetracaine) or desensitized (thienycyclohexylpiperidine (TCP)) state, and this pharmacologically specific photolabeling was localized to the M2-9 leucine ring (δLeu(265), ßLeu(257)) within the ion channel. In contrast, photolabeling within the αV8-20K was enhanced in the desensitized state and not inhibited by TCP but was inhibited by bupropion. This agonist-enhanced photolabeling was localized to αTyr(213) in αM1. These results establish the presence of two distinct bupropion binding sites within the Torpedo nAChR transmembrane domain: a high affinity site at the middle (M2-9) of the ion channel and a second site near the extracellular end of αM1 within a previously described halothane (general anesthetic) binding pocket.


Subject(s)
Azides/metabolism , Bupropion/analogs & derivatives , Bupropion/metabolism , Cell Membrane/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Torpedo , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Binding Sites , Bupropion/pharmacology , Nicotinic Antagonists/chemistry , Nicotinic Antagonists/metabolism , Nicotinic Antagonists/pharmacology , Photoaffinity Labels/chemistry , Photoaffinity Labels/metabolism , Protein Binding , Protein Structure, Tertiary
13.
Bioorg Med Chem Lett ; 22(1): 523-6, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22119468

ABSTRACT

Towards addressing the knowledge gap of how bupropion interacts with the dopamine transporter (DAT) and nicotinic acetylcholine receptors (nAChRs), a ligand was synthesized in which the chlorine of bupropion was isosterically replaced with an iodine and a photoreactive azide was added to the 4'-position of the aromatic ring. Analog (±)-3 (SADU-3-72) demonstrated modest DAT and α4ß2 nAChR affinity. A radioiodinated version was shown to bind covalently to hDAT expressed in cultured cells and affinity-purified, lipid-reincorporated human α4ß2 neuronal nAChRs. Co-incubation of (±)-[(125)I]-3 with non-radioactive (±)-bupropion or (-)-cocaine blocked labeling of these proteins. Compound (±)-[(125)I]-3 represents the first successful example of a DAT and nAChR photoaffinity ligand based on the bupropion scaffold. Such ligands are expected to assist in mapping bupropion-binding pockets within plasma membrane monoamine transporters and ligand-gated nAChR ion channels.


Subject(s)
Azides/chemical synthesis , Azides/pharmacology , Bupropion/analogs & derivatives , Bupropion/pharmacology , Chemistry, Pharmaceutical/methods , Receptors, Nicotinic/metabolism , Azides/chemistry , Bupropion/chemical synthesis , Dopamine Plasma Membrane Transport Proteins/metabolism , Drug Design , Humans , Iodine/chemistry , Iodine Radioisotopes/chemistry , Kinetics , Ligands , Models, Chemical , Photochemistry/methods
14.
Biochemistry ; 48(39): 9278-86, 2009 Oct 06.
Article in English | MEDLINE | ID: mdl-19715355

ABSTRACT

A HEK-293 cell line that stably expresses mouse 5-HT(3A)Rs containing a C-terminal extension that confers high-affinity binding of alpha-bungarotoxin (alphaBgTx) was established (alphaBgTx-5-HT(3A)Rs) and used to purify alphaBgTx-5-HT(3A)Rs in a lipid environment for use in structural studies using photoaffinity labeling. alphaBgTx-5-HT(3A)Rs were expressed robustly (60 pmol of [(3)H]BRL-43694 binding sites (approximately 3 microg of receptor) per milligram of protein) and displayed the same functional properties as wild-type receptors (serotonin EC(50) = 5.3 +/- 0.04 microM). While [(125)I]alphaBgTx bound to the alphaBgTx-5-HT(3A)Rs with high affinity (K(d) = 11 nM), application of nonradioactive alphaBgTx (up to 300 microM) had no effect on serotonin-induced current responses. alphaBgTx-5-HT(3A)Rs were purified on an alphaBgTx-derivatized affinity column from detergent extracts in milligram quantities and at approximately 25% purity. The hydrophobic photolabel 3-trifluoromethyl-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) was used to identify the amino acids at the lipid-protein interface of purified and lipid-reconstituted alphaBgTx-5-HT(3A)Rs. [(125)I]TID photoincorporation into the alphaBgTx-5-HT(3A)R subunit was initially mapped to subunit proteolytic fragments of 8 kDa, containing the M4 transmembrane segment and approximately 60% of incorporated (125)I, and 17 kDa, containing the M1-M3 transmembrane segments. Within the M4 segment, [(125)I]TID labeled Ser(451), equivalent to the [(125)I]TID-labeled residue Thr(422) at the lipid-exposed face of the Torpedo nicotinic acetylcholine receptor (nAChR) alpha1M4 alpha-helix. These results provide a first definition of the surface of the 5-HT(3A)R M4 helix that is exposed to lipid and establish that this surface is equivalent to the surface exposed to lipid in the Torpedo nAChR.


Subject(s)
Lipoproteins/metabolism , Photoaffinity Labels/metabolism , Receptors, Serotonin, 5-HT3/chemistry , Animals , Bungarotoxins/metabolism , Cell Line , Humans , Hydrophobic and Hydrophilic Interactions , Lipoproteins/chemistry , Mice , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Torpedo/metabolism
15.
J Biol Chem ; 284(37): 24939-47, 2009 Sep 11.
Article in English | MEDLINE | ID: mdl-19620239

ABSTRACT

Nicotinic acetylcholine receptor (nAChR) agonists, such as epibatidine and its molecular derivatives, are potential therapeutic agents for a variety of neurological disorders. In order to identify determinants for subtype-selective agonist binding, it is important to determine whether an agonist binds in a common orientation in different nAChR subtypes. To compare the mode of binding of epibatidine in a muscle and a neuronal nAChR, we photolabeled Torpedo alpha(2)betagammadelta and expressed human alpha4beta2 nAChRs with [(3)H]epibatidine and identified by Edman degradation the photolabeled amino acids. Irradiation at 254 nm resulted in photolabeling of alphaTyr(198) in agonist binding site Segment C of the principal (+) face in both alpha subunits and of gammaLeu(109) and gammaTyr(117) in Segment E of the complementary (-) face, with no labeling detected in the delta subunit. For affinity-purified alpha4beta2 nAChRs, [(3)H]epibatidine photolabeled alpha4Tyr(195) (equivalent to Torpedo alphaTyr(190)) in Segment C as well as beta2Val(111) and beta2Ser(113) in Segment E (equivalent to Torpedo gammaLeu(109) and gammaTyr(111), respectively). Consideration of the location of the photolabeled amino acids in homology models of the nAChRs based upon the acetylcholine-binding protein structure and the results of ligand docking simulations suggests that epibatidine binds in a single preferred orientation within the alpha-gamma transmitter binding site, whereas it binds in two distinct orientations in the alpha4beta2 nAChR.


Subject(s)
Amino Acids/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Pyridines/pharmacology , Receptors, Nicotinic/metabolism , Acetylcholine/metabolism , Analgesics, Non-Narcotic/pharmacology , Animals , Binding Sites , Chromatography, High Pressure Liquid , Crystallography, X-Ray/methods , Dose-Response Relationship, Drug , Humans , Models, Biological , Protein Binding , Torpedo , Tyrosine/chemistry
16.
Biochim Biophys Acta ; 1788(9): 1987-95, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19545536

ABSTRACT

The development of nicotinic acetylcholine receptor (nAChR) agonists, particularly those that discriminate between neuronal nAChR subtypes, holds promise as potential therapeutic agents for many neurological diseases and disorders. To this end, we photoaffinity labeled human alpha4beta2 and rat alpha4beta4 nAChRs affinity-purified from stably transfected HEK-293 cells, with the agonists [(125)I]epibatidine and 5[(125)I]A-85380. Our results show that both agonists photoincorporated into the beta4 subunit with little or no labeling of the beta2 and alpha4 subunits respectively. [(125)I]epibatidine labeling in the beta4 subunit was mapped to two overlapping proteolytic fragments that begin at beta4V102 and contain Loop E (beta4I109-P120) of the agonist binding site. We were unable to identify labeled amino acid(s) in Loop E by protein sequencing, but we were able to demonstrate that beta4Q117 in Loop E is the principal site of [(125)I]epibatidine labeling. This was accomplished by substituting residues in the beta2 subunit with the beta4 homologs and finding [(125)I]epibatidine labeling in beta4 and beta2F119Q subunits with little, if any, labeling in alpha4, beta2, or beta2S113R subunits. Finally, functional studies established that the beta2F119/beta4Q117 position is an important determinant of the receptor subtype-selectivity of the agonist 5I-A-85380, affecting both binding affinity and channel activation.


Subject(s)
Azetidines/metabolism , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Nicotinic Agonists/metabolism , Pyridines/metabolism , Receptors, Nicotinic/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cells, Cultured , Humans , Iodine Radioisotopes , Molecular Sequence Data , Nicotinic Agonists/pharmacology , Oocytes/physiology , Photoaffinity Labels , Rats , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/genetics , Sequence Alignment , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...