Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep ; 42(9): 113103, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37676769

ABSTRACT

Japanese encephalitis (JE) is a vector-borne viral disease that causes acute encephalitis in children. Although vaccines have been developed against the JE virus (JEV), no effective antiviral therapy exists. Our study shows that inhibition of poly(ADP-ribose) polymerase 1 (PARP1), an NAD+-dependent (poly-ADP) ribosyl transferase, protects against JEV infection. Interestingly, PARP1 is critical for JEV pathogenesis in Neuro-2a cells and mice. Small molecular inhibitors of PARP1, olaparib, and 3-aminobenzamide (3-AB) significantly reduce clinical signs and viral load in the serum and brains of mice and improve survival. PARP1 inhibition confers protection against JEV infection by inhibiting autophagy. Mechanistically, upon JEV infection, PARP1 PARylates AKT and negatively affects its phosphorylation. In addition, PARP1 transcriptionally upregulates PTEN, the PIP3 phosphatase, negatively regulating AKT. PARP1-mediated AKT inactivation promotes autophagy and JEV pathogenesis by increasing the FoxO activity. Thus, our findings demonstrate PARP1 as a potential mediator of JEV pathogenesis that can be effectively targeted for treating JE.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Child , Humans , Encephalitis, Japanese/drug therapy , Encephalitis, Japanese/prevention & control , Proto-Oncogene Proteins c-akt , Brain/pathology , Poly (ADP-Ribose) Polymerase-1
2.
Sci Rep ; 8(1): 5599, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29618792

ABSTRACT

Cardiomyopathy is one of the characteristic features of cancer. In this study, we establish a suitable model to study breast cancer-induced cardiomyopathy in mice. We used Ehrlich Ascites Carcinoma cells to induce subcutaneous tumor in 129/SvJ mice and studied its effect on heart function. In Ehrlich Ascites Carcinoma bearing mice, we found significant reduction in left ventricle wall thickness, ejection fraction, and fractional shortening increase in left ventricle internal diameter. We found higher muscle atrophy, degeneration, fibrosis, expression of cell-adhesion molecules and cell death in tumor-bearing mice hearts. As observed in cancer patients, we found that mTOR, a key signalling molecule responsible for maintaining cell growth and autophagy was suppressed in this model. Tumor bearing mice hearts show increased expression and nuclear localization of TFEB and FoxO3a transcription factors, which are involved in the upregulation of muscle atrophy genes, lysosomal biogenesis genes and autophagy genes. We propose that Ehrlich Ascites Carcinoma induced tumor can be used as a model to identify potential therapeutic targets for the treatment of heart failure in patients suffering from cancer-induced cardiomyopathy. This model can also be used to test the adverse consequences of cancer chemotherapy in heart.


Subject(s)
Carcinoma, Ehrlich Tumor/pathology , Cardiomyopathies/pathology , Animals , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Cachexia/etiology , Cachexia/pathology , Carcinoma, Ehrlich Tumor/complications , Carcinoma, Ehrlich Tumor/metabolism , Cardiomyopathies/etiology , Disease Models, Animal , Fibrosis , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Lysosomes/metabolism , Mice , Mice, 129 Strain , Myocardium/metabolism , Myocardium/pathology , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL