Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Oncogene ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719949

ABSTRACT

Epigenetic regulation established during development to maintain patterns of transcriptional expression and silencing for metabolism and other fundamental cell processes can be reprogrammed in cancer, providing a molecular mechanism for persistent alterations in phenotype. Metabolic deregulation and reprogramming are thus an emerging hallmark of cancer with opportunities for molecular classification as a critical preliminary step for precision therapeutic intervention. Yet, acquisition of therapy resistance against most conventional treatment regimens coupled with tumor relapse, continue to pose unsolved problems for precision healthcare, as exemplified in breast cancer where existing data informs both cancer genotype and phenotype. Furthermore, epigenetic reprograming of the metabolic milieu of cancer cells is among the most crucial determinants of therapeutic resistance and cancer relapse. Importantly, subtype-specific epigenetic-metabolic interplay profoundly affects malignant transformation, resistance to chemotherapy, and response to targeted therapies. In this review, we therefore prismatically dissect interconnected epigenetic and metabolic regulatory pathways and then integrate them into an observable cancer metabolism-therapy-resistance axis that may inform clinical intervention. Optimally coupling genome-wide analysis with an understanding of metabolic elements, epigenetic reprogramming, and their integration by metabolic profiling may decode missing molecular mechanisms at the level of individual tumors. The proposed approach of linking metabolic biochemistry back to genotype, epigenetics, and phenotype for specific tumors and their microenvironment may thus enable successful mechanistic targeting of epigenetic modifiers and oncometabolites despite tumor metabolic heterogeneity.

3.
Ther Adv Cardiovasc Dis ; 17: 17539447231210170, 2023.
Article in English | MEDLINE | ID: mdl-38069578

ABSTRACT

Diabetic cardiomyopathy (DCM) is characterized by structural and functional abnormalities in the myocardium affecting people with diabetes. Treatment of DCM focuses on glucose control, blood pressure management, lipid-lowering, and lifestyle changes. Due to limited therapeutic options, DCM remains a significant cause of morbidity and mortality in patients with diabetes, thus emphasizing the need to develop new therapeutic strategies. Ongoing research is aimed at understanding the underlying molecular mechanism(s) involved in the development and progression of DCM, including oxidative stress, inflammation, and metabolic dysregulation. The goal is to develope innovative pharmaceutical therapeutics, offering significant improvements in the clinical management of DCM. Some of these approaches include the effective targeting of impaired insulin signaling, cardiac stiffness, glucotoxicity, lipotoxicity, inflammation, oxidative stress, cardiac hypertrophy, and fibrosis. This review focuses on the latest developments in understanding the underlying causes of DCM and the therapeutic landscape of DCM treatment.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Humans , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Myocardium/metabolism , Heart , Signal Transduction , Inflammation/drug therapy
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194979, 2023 12.
Article in English | MEDLINE | ID: mdl-37633647

ABSTRACT

The ubiquitin proteasomal system (UPS) represents a highly regulated protein degradation pathway essential for maintaining cellular homeostasis. This system plays a critical role in several cellular processes, which include DNA damage repair, cell cycle checkpoint control, and immune response regulation. Recently, the UPS has emerged as a promising target for cancer therapeutics due to its involvement in oncogenesis and tumor progression. Here we aim to summarize the key aspects of the UPS and its significance in cancer therapeutics. We begin by elucidating the fundamental components of the UPS, highlighting the role of ubiquitin, E1-E3 ligases, and the proteasome in protein degradation. Furthermore, we discuss the intricate process of ubiquitination and proteasomal degradation, emphasizing the specificity and selectivity achieved through various signaling pathways. The dysregulation of the UPS has been implicated in cancer development and progression. Aberrant ubiquitin-mediated degradation of key regulatory proteins, such as tumor suppressors and oncoproteins, can lead to uncontrolled cell proliferation, evasion of apoptosis, and metastasis. We outline the pivotal role of the UPS in modulating crucial oncogenic pathways, including the regulation of cyclins, transcription factors, Replication stress components and DNA damage response. The increasing recognition of the UPS as a target for cancer therapeutics has spurred the development of small molecules, peptides, and proteasome inhibitors with the potential to restore cellular balance and disrupt tumor growth. We provide an overview of current therapeutic strategies aimed at exploiting the UPS, including the use of proteasome inhibitors, deubiquitinating enzyme inhibitors, and novel E3 ligase modulators. We further discuss novel emerging strategies for the development of next-generation drugs that target proteasome inhibitors. Exploiting the UPS for cancer therapeutics offers promising avenues for developing innovative and effective treatment strategies, providing hope for improved patient outcomes in the fight against cancer.


Subject(s)
Neoplasms , Proteasome Inhibitors , Humans , Proteasome Inhibitors/therapeutic use , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism
5.
Mol Cell Biol ; 43(8): 401-425, 2023.
Article in English | MEDLINE | ID: mdl-37439479

ABSTRACT

Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.


Subject(s)
DDT , DNA Repair , Humans , DNA Replication , DNA/genetics , DNA Damage , Genomic Instability
6.
Adv Protein Chem Struct Biol ; 135: 21-55, 2023.
Article in English | MEDLINE | ID: mdl-37061333

ABSTRACT

Regulated cell division is one of the fundamental phenomena which is the basis of all life on earth. Even a single base pair mutation in DNA leads to the production of the dysregulated protein that can have catastrophic consequences. Cell division is tightly controlled and orchestrated by proteins called cyclins and cyclin-dependent kinase (CDKs), which serve as licensing factors during different phases of cell division. Dysregulated cell division is one of the most important hallmarks of cancer and is commonly associated with a mutation in cyclins and CDKs along with tumor suppressor proteins. Therefore, targeting the component of the cell cycle which leads to these characteristics would be an effective strategy for treating cancers. Specifically, Cyclin-dependent kinases (CDKs) involved in cell cycle regulation have been identified to be overexpressed in many cancers. Many studies indicate that oncogenesis occurs in cancerous cells by the overactivity of different CDKs, which impact cell cycle progression and checkpoint dysregulation which is responsible for development of tumor. The development of CDK inhibitors has emerged as a promising and novel approach for cancer treatment in both solid and hematological malignancies. Some of the novel CDK inhibitors have shown remarkable results in clinical trials, such as-Ribociclib®, Palbociclib® and Abemaciclib®, which are CDK4/6 inhibitors and have received FDA approval for the treatment of breast cancer. In this chapter, we discuss the molecular mechanism through which cyclins and CDKs regulate cell cycle progression and the emergence of cyclins and CDKs as rational targets in cancer. We also discuss recent advances in developing CDK inhibitors, which have emerged as a novel class of inhibitors, and their associated toxicities in recent years.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinases , Humans , Female , Cell Cycle , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cyclins
7.
J Transl Med ; 21(1): 286, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37118828

ABSTRACT

BACKGROUND: Osteosarcoma is a type of bone cancer that predominantly affects young individuals, including children and adolescents. The disease progresses through heterogeneous genetic alterations, and patients often develop pulmonary metastases even after the primary tumors have been surgically removed. Ubiquitin-specific peptidases (USPs) regulate several critical cellular processes, such as cell cycle progression, transcriptional activation, and signal transduction. Various studies have revealed the significance of USP37 in the regulation of replication stress and oncogenesis. METHODS: In this study, the Cancer Genome Atlas (TCGA) database was analyzed to investigate USP37 expression. RNA sequencing was utilized to assess the impact of USP37 overexpression and depletion on gene expression in osteosarcoma cells. Various molecular assays, including colony formation, immunofluorescence, immunoprecipitation, and DNA replication restart, were employed to examine the physical interaction between USP37 and PCNA, as well as its physiological effects in osteosarcoma cells. Additionally, molecular docking studies were conducted to gain insight into the nature of the interaction between USP37 and PCNA. Furthermore, immunohistochemistry was performed on archived tissue blocks from osteosarcoma patients to establish a correlation between USP37 and PCNA expression. RESULTS: Analysis of the TCGA database revealed that increased expression of USP37 was linked to decreased progression-free survival (PFS) in osteosarcoma patients. Next-generation sequencing analysis of osteosarcoma cells demonstrated that overexpression or knockdown of USP37 led to the expression of different sets of genes. USP37 overexpression provided a survival advantage, while its depletion heightened sensitivity to replication stress in osteosarcoma cells. USP37 was found to physically interact with PCNA, and molecular docking studies indicated that the interaction occurs through unique residues. In response to genotoxic stress, cells that overexpressed USP37 resolved DNA damage foci more quickly than control cells or cells in which USP37 was depleted. The expression of USP37 varied in archived osteosarcoma tissues, with intermediate expression seen in 52% of cases in the cohort examined. CONCLUSION: The results of this investigation propose that USP37 plays a vital role in promoting replication stress tolerance in osteosarcoma cells. The interaction between USP37 and PCNA is involved in the regulation of replication stress, and disrupting it could potentially trigger synthetic lethality in osteosarcoma. This study has expanded our knowledge of the mechanism through which USP37 regulates replication stress, and its potential as a therapeutic target in osteosarcoma merits additional exploration.


Subject(s)
Bone Neoplasms , Osteosarcoma , Child , Humans , Adolescent , Proliferating Cell Nuclear Antigen , Endopeptidases/genetics , Endopeptidases/metabolism , Molecular Docking Simulation , Ubiquitin-Specific Proteases , Osteosarcoma/genetics , Bone Neoplasms/genetics
8.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769195

ABSTRACT

Cellular senescence-the irreversible cell cycle arrest driven by a variety of mechanisms and, more specifically, the senescence-associated secretory phenotype (SASP)-is an important area of research in the context of different age-related diseases, such as cardiovascular disease and cancer. SASP factors play both beneficial and detrimental roles in age-related disease progression depending on the source of the SASPs, the target cells, and the microenvironment. The impact of senescence and the SASP on different cell types, the immune system, and the vascular system has been widely discussed. However, the impact of replicative or stress-induced senescence on lymphatic biology and pathological lymphangiogenesis remains underexplored. The lymphatic system plays a crucial role in the maintenance of body fluid homeostasis and immune surveillance. The perturbation of lymphatic function can hamper normal physiological function. Natural aging or stress-induced premature aging influences the lymphatic vessel structure and function, which significantly affect the role of lymphatics in tumor dissemination and metastasis. In this review, we focus on the role of senescence on lymphatic pathobiology, its impact on cancer, and potential therapeutic interventions to manipulate the aged or senescent lymphatic system for disease management.


Subject(s)
Cellular Senescence , Tumor Microenvironment , Humans , Lymphatic Metastasis , Cellular Senescence/genetics , Cell Cycle Checkpoints
9.
Cancer Res ; 83(5): 657-666, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36661847

ABSTRACT

Therapy resistance is imposing a daunting challenge on effective clinical management of breast cancer. Although the development of resistance to drugs is multifaceted, reprogramming of energy metabolism pathways is emerging as a central but heterogenous regulator of this therapeutic challenge. Metabolic heterogeneity in cancer cells is intricately associated with alterations of different signaling networks and activation of DNA damage response pathways. Here we consider how the dynamic metabolic milieu of cancer cells regulates their DNA damage repair ability to ultimately contribute to development of therapy resistance. Diverse epigenetic regulators are crucial in remodeling the metabolic landscape of cancer. This epigenetic-metabolic interplay profoundly affects genomic stability of the cancer cells as well as their resistance to genotoxic therapies. These observations identify defining mechanisms of cancer epigenetics-metabolism-DNA repair axis that can be critical for devising novel, targeted therapeutic approaches that could sensitize cancer cells to conventional treatment strategies.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , DNA Repair , DNA Damage , Epigenesis, Genetic
10.
Adv Protein Chem Struct Biol ; 133: 85-114, 2023.
Article in English | MEDLINE | ID: mdl-36707207

ABSTRACT

Ovarian cancer (OC) is one of the most common causes of cancer-related death in women worldwide. Its five-year survival rates are worse than the two most common gynecological cancers, cervical and endometrial. This is because it is asymptomatic in the early stages and usually detected in the advanced metastasized stage. Thus, survival is increasingly dependent on timely diagnosis. The delay in detection is contributed partly by the occurrence of non-specific clinical symptoms in the early stages and the lack of effective biomarkers and detection approaches. This underlines the need for biomarker identification and clinical validation, enabling earlier diagnosis, effective prognosis, and response to therapy. Apart from the traditional diagnostic biomarkers for OC, several new biomarkers have been delineated using advanced high-throughput molecular approaches in recent years. They are currently being clinically evaluated for their true diagnostic potential. In this chapter, we document the commonly utilized traditional screening markers and recently identified emerging biomarkers in OC diagnosis, focusing on secretory and protein biomarkers. We also briefly reviewed the recent advances and prospects in OC diagnosis.


Subject(s)
Biomarkers, Tumor , Ovarian Neoplasms , Female , Humans , Biomarkers, Tumor/metabolism , Early Detection of Cancer , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/pathology , Proteins , CA-125 Antigen
11.
Subcell Biochem ; 100: 115-141, 2022.
Article in English | MEDLINE | ID: mdl-36301493

ABSTRACT

The accurate repair of genomic damage mediated by ionizing radiation (IR), chemo- or radiomimetic drugs, or other exogenous agents, is necessary for maintenance of genome integrity, preservation of cellular viability and prevention of oncogenic transformation. Eukaryotes have conserved mechanisms designed to perceive and repair the damaged DNA quite efficiently. Among the different types of DNA damage, double strand breaks (DSB) are the most detrimental. The cellular DNA DSB response is a hierarchical signaling network that integrates damage sensing and repair with chromatin structural changes that involve a range of pre-existing and induced covalent modifications. Recent studies have revealed that pre-existing histone modifications are important contributors within this signaling/repair network. This chapter discusses the role of a critical histone acetyl transferase (HAT) known as MOF (males absent on the first) and the histone deacetylases (HDACs) Sirtuins on histone H4K16 acetylation (H4K16ac) and DNA damage repair. We also discuss the role of this important histone modification in light of metabolic rewiring and its role in regulating human pathophysiologic states.


Subject(s)
Aging , Histone Acetyltransferases , Neoplasms , Sirtuins , Humans , Acetylation , Chromatin , DNA/metabolism , DNA Damage , DNA Repair , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/metabolism , Neoplasms/genetics , Sirtuins/genetics , Sirtuins/metabolism
12.
Int J Mol Sci ; 23(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35887150

ABSTRACT

Most living organisms have in their genome a sizable proportion of DNA sequences capable of mobilization; these sequences are commonly referred to as transposons, transposable elements (TEs), or jumping genes. Although long thought to have no biological significance, advances in DNA sequencing and analytical technologies have enabled precise characterization of TEs and confirmed their ubiquitous presence across all forms of life. These findings have ignited intense debates over their biological significance. The available evidence now supports the notion that TEs exert major influence over many biological aspects of organismal life. Transposable elements contribute significantly to the evolution of the genome by giving rise to genetic variations in both active and passive modes. Due to their intrinsic nature of mobility within the genome, TEs primarily cause gene disruption and large-scale genomic alterations including inversions, deletions, and duplications. Besides genomic instability, growing evidence also points to many physiologically important functions of TEs, such as gene regulation through cis-acting control elements and modulation of the transcriptome through epigenetic control. In this review, we discuss the latest evidence demonstrating the impact of TEs on genome stability and the underling mechanisms, including those developed to mitigate the deleterious impact of TEs on genomic stability and human health. We have also highlighted the potential therapeutic application of TEs.


Subject(s)
DNA Transposable Elements , Genomic Instability , DNA Transposable Elements/genetics , Evolution, Molecular , Genomics , Humans , Regulatory Sequences, Nucleic Acid , Transcriptome
14.
Cells ; 11(11)2022 06 02.
Article in English | MEDLINE | ID: mdl-35681523

ABSTRACT

Organ-on-a-chip (OOAC) is an emerging technology based on microfluid platforms and in vitro cell culture that has a promising future in the healthcare industry. The numerous advantages of OOAC over conventional systems make it highly popular. The chip is an innovative combination of novel technologies, including lab-on-a-chip, microfluidics, biomaterials, and tissue engineering. This paper begins by analyzing the need for the development of OOAC followed by a brief introduction to the technology. Later sections discuss and review the various types of OOACs and the fabrication materials used. The implementation of artificial intelligence in the system makes it more advanced, thereby helping to provide a more accurate diagnosis as well as convenient data management. We introduce selected OOAC projects, including applications to organ/disease modelling, pharmacology, personalized medicine, and dentistry. Finally, we point out certain challenges that need to be surmounted in order to further develop and upgrade the current systems.


Subject(s)
Artificial Intelligence , Lab-On-A-Chip Devices , Biocompatible Materials , Microfluidics , Tissue Engineering
15.
iScience ; 25(4): 104142, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35434547

ABSTRACT

Hyperthermia inhibits DNA double-strand break (DSB) repair that utilizes homologous recombination (HR) pathway by a poorly defined mechanism(s); however, the mechanisms for this inhibition remain unclear. Here we report that hyperthermia decreases H4K16 acetylation (H4K16ac), an epigenetic modification essential for genome stability and transcription. Heat-induced reduction in H4K16ac was detected in humans, Drosophila, and yeast, indicating that this is a highly conserved response. The examination of histone deacetylase recruitment to chromatin after heat-shock identified SIRT1 as the major deacetylase subsequently enriched at gene-rich regions. Heat-induced SIRT1 recruitment was antagonized by chromatin remodeler SMARCAD1 depletion and, like hyperthermia, the depletion of the SMARCAD1 or combination of the two impaired DNA end resection and increased replication stress. Altered repair protein recruitment was associated with heat-shock-induced γ-H2AX chromatin changes and DSB repair processing. These results support a novel mechanism whereby hyperthermia impacts chromatin organization owing to H4K16ac deacetylation, negatively affecting the HR-dependent DSB repair.

16.
Oncogene ; 41(2): 204-219, 2022 01.
Article in English | MEDLINE | ID: mdl-34718349

ABSTRACT

In addition to its classical role in apoptosis, accumulating evidence suggests that caspase-2 has non-apoptotic functions, including regulation of cell division. Loss of caspase-2 is known to increase proliferation rates but how caspase-2 is regulating this process is currently unclear. We show that caspase-2 is activated in dividing cells in G1-phase of the cell cycle. In the absence of caspase-2, cells exhibit numerous S-phase defects including delayed exit from S-phase, defects in repair of chromosomal aberrations during S-phase, and increased DNA damage following S-phase arrest. In addition, caspase-2-deficient cells have a higher frequency of stalled replication forks, decreased DNA fiber length, and impeded progression of DNA replication tracts. This indicates that caspase-2 protects from replication stress and promotes replication fork protection to maintain genomic stability. These functions are independent of the pro-apoptotic function of caspase-2 because blocking caspase-2-induced cell death had no effect on cell division, DNA damage-induced cell cycle arrest, or DNA damage. Thus, our data supports a model where caspase-2 regulates cell cycle and DNA repair events to protect from the accumulation of DNA damage independently of its pro-apoptotic function.


Subject(s)
Caspase 2/genetics , Cell Cycle/genetics , DNA Damage/genetics , Animals , Apoptosis , Humans , Mice
17.
J Cancer Res Ther ; 18(4): 873-879, 2022.
Article in English | MEDLINE | ID: mdl-33533734

ABSTRACT

Gastric Carcinoma (GC) is one of the most common malignancies, which accounts for 6.8% of total cancer population worldwide. In India, the northeastern region has the highest gastric cancer incidence, and the Kashmir Valley has a very high incidence of gastric cancer as compared to other parts of Northern India. It exceeds 40% of total cancers with an incidence rate of 3-6-fold higher than other metro cities of India. Gastric cancer is a heterogeneous disease where most of the cases are sporadic, and <15% are due to obvious familial clustering. The heterogeneous nature of the disease can be associated with differences in genetic makeup of an individual. A better understanding of genetic predisposition toward GC will be helpful in promoting personalized medicine. The aim of this review is to analyze the development and progression of GC and to explore the genetic perspectives of the disease with special emphasis on Jammu and Kashmir, India.


Subject(s)
Stomach Neoplasms , Genetic Predisposition to Disease , Humans , Incidence , India/epidemiology , Stomach Neoplasms/epidemiology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
18.
Mol Cell Biol ; 42(1): e0048321, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34748401

ABSTRACT

From initiation through progression, cancer cells are subjected to a magnitude of endogenous and exogenous stresses, which aid in their neoplastic transformation. Exposure to these classes of stress induces imbalance in cellular homeostasis and, in response, cancer cells employ informative adaptive mechanisms to rebalance biochemical processes that facilitate survival and maintain their existence. Different kinds of stress stimuli trigger epigenetic alterations in cancer cells, which leads to changes in their transcriptome and metabolome, ultimately resulting in suppression of growth inhibition or induction of apoptosis. Whether cancer cells show a protective response to stress or succumb to cell death depends on the type of stress and duration of exposure. A thorough understanding of epigenetic and molecular architecture of cancer cell stress response pathways can unveil a plethora of information required to develop novel anticancer therapeutics. The present view highlights current knowledge about alterations in epigenome and transcriptome of cancer cells as a consequence of exposure to different physicochemical stressful stimuli such as reactive oxygen species (ROS), hypoxia, radiation, hyperthermia, genotoxic agents, and nutrient deprivation. Currently, an anticancer treatment scenario involving the imposition of stress to target cancer cells is gaining traction to augment or even replace conventional therapeutic regimens. Therefore, a comprehensive understanding of stress response pathways is crucial for devising and implementing novel therapeutic strategies.


Subject(s)
Metabolome/physiology , Neoplasms/etiology , Reactive Oxygen Species/metabolism , Transcriptome/physiology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Epigenomics/methods , Humans , Hypoxia/metabolism , Oxidative Stress/physiology
19.
DNA Repair (Amst) ; 107: 103205, 2021 11.
Article in English | MEDLINE | ID: mdl-34399315

ABSTRACT

The accurate repair of DNA damage specifically the chromosomal double-strand breaks (DSBs) arising from exposure to physical or chemical agents, such as ionizing radiation (IR) and radiomimetic drugs is critical in maintaining genomic integrity. The DNA DSB response and repair is facilitated by hierarchical signaling networks that orchestrate chromatin structural changes specifically histone modifications which impact cell-cycle checkpoints through enzymatic activities to repair the broken DNA ends. Various histone posttranslational modifications such as phosphorylation, acetylation, methylation and ubiquitylation have been shown to play a role in DNA damage repair. Recent studies have provided important insights into the role of histone-specific modifications in sensing DNA damage and facilitating the DNA repair. Histone modifications have been shown to determine the pathway choice for repair of DNA DSBs. This review will summarize the role of important histone acetyltransferases MOF and Tip60 mediated acetylation in repair of DNA DSBs in eukaryotic cells.


Subject(s)
Histone Acetyltransferases
20.
Genes (Basel) ; 12(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209979

ABSTRACT

Packaging of the eukaryotic genome with histone and other proteins forms a chromatin structure that regulates the outcome of all DNA mediated processes. The cellular pathways that ensure genomic stability detect and repair DNA damage through mechanisms that are critically dependent upon chromatin structures established by histones and, particularly upon transient histone post-translational modifications. Though subjected to a range of modifications, histone methylation is especially crucial for DNA damage repair, as the methylated histones often form platforms for subsequent repair protein binding at damaged sites. In this review, we highlight and discuss how histone methylation impacts the maintenance of genome integrity through effects related to DNA repair and repair pathway choice.


Subject(s)
Genomic Instability , Histone Code , Animals , DNA Repair , Histones/metabolism , Humans , Methylation
SELECTION OF CITATIONS
SEARCH DETAIL
...