Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Med Biol ; 67(16)2022 08 05.
Article in English | MEDLINE | ID: mdl-35679848

ABSTRACT

Objective.In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of4He ion.Approach.Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy,yD¯andy¯F, derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter).Main results.A good agreement ofL¯dTotalandL¯tTotalwithy¯Dandy¯Texperimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated4He ion beam, was found.Significance.The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.


Subject(s)
Linear Energy Transfer , Radiometry , Algorithms , Ions , Monte Carlo Method , Protons , Radiometry/methods
2.
Eur Phys J C Part Fields ; 82(3): 248, 2022.
Article in English | MEDLINE | ID: mdl-35399983

ABSTRACT

The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) experiment aims at the detection of dark matter-induced recoils in sodium iodide (NaI) crystals operated as scintillating cryogenic calorimeters. The detection of both scintillation light and phonons allows performing an event-by-event signal to background discrimination, thus enhancing the sensitivity of the experiment. The choice of using NaI crystals is motivated by the goal of probing the long-standing DAMA/LIBRA results using the same target material. The construction of the experimental facility is foreseen to start by 2021 at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It consists of a cryostat housing the target crystals shielded from the external radioactivity by a water tank acting, at the same time, as an active veto against cosmic ray-induced events. Taking into account both environmental radioactivity and intrinsic contamination of materials used for cryostat, shielding and infrastructure, we performed a careful background budget estimation. The goal is to evaluate the number of events that could mimic or interfere with signal detection while optimising the geometry of the experimental setup. In this paper we present the results of the detailed Monte Carlo simulations we performed, together with the final design of the setup that minimises the residual amount of background particles reaching the detector volume.

3.
Med Phys ; 48(1): 19-56, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32392626

ABSTRACT

BACKGROUND: Geant4 is a Monte Carlo code extensively used in medical physics for a wide range of applications, such as dosimetry, micro- and nanodosimetry, imaging, radiation protection, and nuclear medicine. Geant4 is continuously evolving, so it is crucial to have a system that benchmarks this Monte Carlo code for medical physics against reference data and to perform regression testing. AIMS: To respond to these needs, we developed G4-Med, a benchmarking and regression testing system of Geant4 for medical physics. MATERIALS AND METHODS: G4-Med currently includes 18 tests. They range from the benchmarking of fundamental physics quantities to the testing of Monte Carlo simulation setups typical of medical physics applications. Both electromagnetic and hadronic physics processes and models within the prebuilt Geant4 physics lists are tested. The tests included in G4-Med are executed on the CERN computing infrastructure via the use of the geant-val web application, developed at CERN for Geant4 testing. The physical observables can be compared to reference data for benchmarking and to results of previous Geant4 versions for regression testing purposes. RESULTS: This paper describes the tests included in G4-Med and shows the results derived from the benchmarking of Geant4 10.5 against reference data. DISCUSSION: Our results indicate that the Geant4 electromagnetic physics constructor G4EmStandardPhysics_option4 gives a good agreement with the reference data for all the tests. The QGSP_BIC_HP physics list provided an overall adequate description of the physics involved in hadron therapy, including proton and carbon ion therapy. New tests should be included in the next stage of the project to extend the benchmarking to other physical quantities and application scenarios of interest for medical physics. CONCLUSION: The results presented and discussed in this paper will aid users in tailoring physics lists to their particular application.


Subject(s)
Benchmarking , Physics , Radiometry , Computer Simulation , Monte Carlo Method
4.
Phys Med Biol ; 65(23): 235043, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33263314

ABSTRACT

We exploited the power of the Geant4 Monte Carlo toolkit to study and validate new approaches for the averaged linear energy transfer (LET) calculation in 62 MeV clinical proton beams. The definitions of the averaged LET dose and LET track were extended, so as to fully account for the contribution of secondary particles generated by target fragmentation, thereby leading to a more general formulation of the LET total. Moreover, in the proposed new strategies for the LET calculation, we minimised the dependencies in respect to the transport parameters adopted during the Monte Carlo simulations (such as the production cut of secondary particles, voxel size and the maximum steplength). The new proposed approach was compared against microdosimetric experimental spectra of clinical proton beams, acquired at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) from two different detectors: a mini-tissue equivalent proportional chamber (TEPC), developed at the Legnaro National Laboratories of the National Institute for Nuclear Physics (LNL-INFN) and a silicon-on-insulator (SOI) microdosimeter with 3D sensitive volumes developed by the Centre for Medical Radiation Physics of Wollongong University (CMRP-UoW). A significant increase of the LET in the entrance region of the spread out Bragg peak (SOBP) was observed, when the contribution of the generated secondary particles was included in the calculation. This was consistent with the experimental results obtained.


Subject(s)
Algorithms , Linear Energy Transfer , Monte Carlo Method , Proton Therapy , Radiation Dosage , Humans , Radiotherapy Dosage
5.
Phys Med ; 73: 65-72, 2020 May.
Article in English | MEDLINE | ID: mdl-32330813

ABSTRACT

PURPOSE: A reliable model to simulate nuclear interactions is fundamental for Ion-therapy. We already showed how BLOB ("Boltzmann-Langevin One Body"), a model developed to simulate heavy ion interactions up to few hundreds of MeV/u, could simulate also 12C reactions in the same energy domain. However, its computation time is too long for any medical application. For this reason we present the possibility of emulating it with a Deep Learning algorithm. METHODS: The BLOB final state is a Probability Density Function (PDF) of finding a nucleon in a position of the phase space. We discretised this PDF and trained a Variational Auto-Encoder (VAE) to reproduce such a discrete PDF. As a proof of concept, we developed and trained a VAE to emulate BLOB in simulating the interactions of 12C with 12C at 62 MeV/u. To have more control on the generation, we forced the VAE latent space to be organised with respect to the impact parameter (b) training a classifier of b jointly with the VAE. RESULTS: The distributions obtained from the VAE are similar to the input ones and the computation time needed to use the VAE as a generator is negligible. CONCLUSIONS: We show that it is possible to use a Deep Learning approach to emulate a model developed to simulate nuclear reactions in the energy range of interest for Ion-therapy. We foresee the implementation of the generation part in C++ and to interface it with the most used Monte Carlo toolkit: Geant4.


Subject(s)
Deep Learning , Radiobiology , Monte Carlo Method
6.
Phys Med ; 67: 116-122, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31706147

ABSTRACT

PURPOSE: Monte Carlo (MC) simulations are widely used for medical applications and nuclear reaction models are fundamental for the simulation of the particle interactions with patients in ion therapy. Therefore, it is of utmost importance to have reliable models in MC simulations for such interactions. Geant4 is one of the most used toolkits for MC simulation. However, its models showed severe limitations in reproducing the yields measured in the interaction of ion beams below 100 MeV/u with thin targets. For this reason, we interfaced two models, SMF ("Stochastic Mean Field") and BLOB ("Boltzmann-Langevin One Body"), dedicated to simulate such reactions, with Geant4. METHODS: Both SMF and BLOB are semi-classical, one-body approaches to solve the Boltzmann-Langevin equation. They include an identical treatment of the mean-field propagation, on the basis of the same effective interaction, but they differ in the way fluctuations are included. Furthermore, we tested a correction to the excitation energy calculated for the light fragments emerging from the simulations and a simple coalescence model. RESULTS: While both SMF and BLOB have been developed to simulate heavy ion interactions, they show very good results in reproducing the experimental yields of light fragments, up to alpha particles, obtained in the interaction of 12C with a thin carbon target at 62 MeV/u. CONCLUSIONS: BLOB in particular gives promising results and this stresses the importance of integrating it into the Geant4 toolkit.


Subject(s)
Monte Carlo Method , Radiotherapy , Stochastic Processes
7.
Phys Med ; 58: 72-80, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30824153

ABSTRACT

PURPOSE: The Geant4 Monte Carlo simulation toolkit was used to reproduce radiobiological parameters measured by irradiating three different cancerous cell lines with monochromatic and clinical proton beams. METHODS: The experimental set-up adopted for irradiations was fully simulated with a dedicated open-source Geant4 application. Cells survival fractions was calculated coupling the Geant4 simulations with two analytical radiobiological models: one based on the LEM (Local Effect Model) approach and the other on a semi-empirical parameterisation. Results was evaluated and compared with experimental data. RESULTS AND CONCLUSIONS: The results demonstrated the Geant4 ability to reproduce radiobiological quantities for different cell lines.


Subject(s)
Monte Carlo Method , Proton Therapy , Cell Line, Tumor , Humans , Radiobiology , Radiotherapy Dosage , Reproducibility of Results
8.
Nucleus (La Habana) ; (63): 45-47, Jan.-June 2018.
Article in English | LILACS | ID: biblio-990208

ABSTRACT

Abstract NUMEN proposes cross sections measurements of Heavy-Ion double charge exchange reactions as an innovative tool to access the nuclear matrix elements, entering the expression of the life time of Neutrinoless double beta decay (0νββ). A key aspect of the projectis the use at INFN-Laboratori Nazionali del Sud (LNS) of the Superconducting Cyclotron (CS) for the acceleration of the required high resolution and low emittance heavy-ion beams and of MAGNEX large acceptance magnetic spectrometer for the detection of the ejectiles. The experimental measurements of double charge exchange reactions induced by heavy ions present a number of challenging aspects, since such reactions are characterized by very low cross sections. First experimental results give encouraging indication on the capability to access quantitative information towards the determination of the Nuclear Matrix Elements for 0νββ decay.


Resumen NUMEN propone mediciones de secciones eficaces de reacciones de intercambio de carga doble de iones pesados como una herramienta innovadora para acceder a los elementos de la matriz nuclear, entrando en la expresión del tiempo de vida de la desintegración beta doble sin neutrino (0νββ). Un aspecto clave del proyecto es el uso en INFN-Laboratori Nazionali del Sud (LNS) del ciclotrón superconductor (CS) para la aceleración de los haces de iones pesados de alta resolución y baja emitancia requeridos y del espectrómetro magnético de gran aceptación MAGNEX para la detección de los residuos eyectados. Las mediciones experimentales de reacciones de intercambio de carga doble inducidas por iones pesados presentan una serie de aspectos desafiantes, ya que tales reacciones se caracterizan por secciones eficaces muy bajas. Los primeros resultados experimentales dan una indicación alentadora sobre la capacidad de acceder a información cuantitativa para la determinación de los Elementos de la Matriz Nuclear para la descomposición de 0νββ.

9.
Phys Med Biol ; 59(24): 7643-52, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25415044

ABSTRACT

When a carbon beam interacts with human tissues, many secondary fragments are produced into the tumor region and the surrounding healthy tissues. Therefore, in hadrontherapy precise dose calculations require Monte Carlo tools equipped with complex nuclear reaction models. To get realistic predictions, however, simulation codes must be validated against experimental results; the wider the dataset is, the more the models are finely tuned.Since no fragmentation data for tissue-equivalent materials at Fermi energies are available in literature, we measured secondary fragments produced by the interaction of a 55.6 MeV u(-1) (12)C beam with thick muscle and cortical bone targets. Three reaction models used by the Geant4 Monte Carlo code, the Binary Light Ions Cascade, the Quantum Molecular Dynamic and the Liege Intranuclear Cascade, have been benchmarked against the collected data. In this work we present the experimental results and we discuss the predictive power of the above mentioned models.


Subject(s)
Carbon/chemistry , Computer Simulation , Heavy Ion Radiotherapy/methods , Models, Theoretical , Monte Carlo Method , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Humans , Radiotherapy Dosage
10.
Phys Med Biol ; 57(22): 7651-71, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23123643

ABSTRACT

Nuclear fragmentation measurements are necessary when using heavy-ion beams in hadrontherapy to predict the effects of the ion nuclear interactions within the human body. Moreover, they are also fundamental to validate and improve the Monte Carlo codes for their use in planning tumor treatments. Nowadays, a very limited set of carbon fragmentation cross sections are being measured, and in particular, to our knowledge, no double-differential fragmentation cross sections at intermediate energies are available in the literature. In this work, we have measured the double-differential cross sections and the angular distributions of the secondary fragments produced in the (12)C fragmentation at 62 A MeV on a thin carbon target. The experimental data have been used to benchmark the prediction capability of the Geant4 Monte Carlo code at intermediate energies, where it was never tested before. In particular, we have compared the experimental data with the predictions of two Geant4 nuclear reaction models: the Binary Light Ions Cascade and the Quantum Molecular Dynamic. From the comparison, it has been observed that the Binary Light Ions Cascade approximates the angular distributions of the fragment production cross sections better than the Quantum Molecular Dynamic model. However, the discrepancies observed between the experimental data and the Monte Carlo simulations lead to the conclusion that the prediction capability of both models needs to be improved at intermediate energies.


Subject(s)
Carbon/therapeutic use , Heavy Ion Radiotherapy/methods , Monte Carlo Method , Carbon/chemistry , Humans
11.
Appl Radiat Isot ; 65(7): 858-65, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17419067

ABSTRACT

In the Abruzzo Region (Central Italy) there is a lack of measurements of gamma-ray activity in soils and waters. For this reason, we have planned to carry out a systematic measurement of soils in the area of the Provincia dell'Aquila, which covers about one-half of the entire region. In this paper we report the results obtained from 56 soil samples, collected in the northern part of the area of interest (about one-fourth of the total area under study). The results, in terms of content of uranium, thorium and potassium and the activity of caesium are reported, as well as the details on the experimental procedure. The results show a limited content of K and U, with no large variations from site to site, in agreement with the expectations based on the knowledge of the geo-lithological nature of the soil. The amount of Th is also quite limited, with a few exceptions where the Th content is up to five times the average value. Caesium, originated from the fall-out following the Chernobyl accident, is very irregularly distributed owing to the complicated orography of the land. Future plans are also shortly discussed.


Subject(s)
Cesium Radioisotopes/analysis , Potassium Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis , Thorium/analysis , Uranium/analysis , Italy , Spectrometry, Gamma/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...