Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 13(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38539837

ABSTRACT

Traumatic brain injury (TBI) is a major global health problem that affects both civilian and military populations worldwide. Post-injury acute, sub-acute, and chronic progression of secondary injury processes may contribute further to other neurodegenerative diseases. However, there are no approved therapeutic options available that can attenuate TBI-related progressive pathophysiology. Recent advances in preclinical research have identified that mitochondria-centric redox imbalance, bioenergetics failure and calcium dysregulation play a crucial role in secondary injury progression after TBI. Mitochondrial antioxidants play an important role in regulating redox homeostasis. Based on the proven efficacy of preclinical and clinical compounds and targeting numerous pathways to trigger innate antioxidant defense, we may be able to alleviate TBI pathology progression by primarily focusing on preserving post-injury mitochondrial and cerebral function. In this review, we will discuss novel mitochondria-targeted antioxidant compounds, which offer a high capability of successful clinical translation for TBI management in the near future.

2.
J Transl Med ; 22(1): 167, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365798

ABSTRACT

Targeting drugs to the mitochondrial level shows great promise for acute and chronic treatment of traumatic brain injury (TBI) in both military and civilian sectors. Perhaps the greatest obstacle to the successful delivery of drug therapies is the blood brain barrier (BBB). Intracerebroventricular and intraparenchymal routes may provide effective delivery of small and large molecule therapies for preclinical neuroprotection studies. However, clinically these delivery methods are invasive, and risk inadequate exposure to injured brain regions due to the rapid turnover of cerebral spinal fluid. The direct intranasal drug delivery approach to therapeutics holds great promise for the treatment of central nervous system (CNS) disorders, as this route is non-invasive, bypasses the BBB, enhances the bioavailability, facilitates drug dose reduction, and reduces adverse systemic effects. Using the intranasal method in animal models, researchers have successfully reduced stroke damage, reversed Alzheimer's neurodegeneration, reduced anxiety, improved memory, and delivered neurotrophic factors and neural stem cells to the brain. Based on literature spanning the past several decades, this review aims to highlight the advantages of intranasal administration over conventional routes for TBI, and other CNS disorders. More specifically, we have identified and compiled a list of most relevant mitochondria-targeted neuroprotective compounds for intranasal administration based on their mechanisms of action and pharmacological properties. Further, this review also discusses key considerations when selecting and testing future mitochondria-targeted drugs given intranasally for TBI.


Subject(s)
Brain Injuries, Traumatic , Neuroprotection , Animals , Administration, Intranasal , Brain Injuries, Traumatic/drug therapy , Drug Delivery Systems/methods , Brain , Blood-Brain Barrier
3.
Anal Biochem ; 680: 115301, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37673410

ABSTRACT

Owing to evidence that mitochondrial dysfunction plays a dominant role in the traumatic brain injury (TBI) pathophysiology, the Western blot (WB) based immunoblotting method is widely employed to identify changes in the mitochondrial protein expressions after neurotrauma. In WB method, the housekeeping proteins (HKPs) expression is routinely used as an internal control for sample normalization. However, the traditionally employed HKPs can be susceptible to complex cascades of TBI pathogenesis, leading to their inconsistent expression. Remarkably, our data illustrated here that mitochondrial HKPs, including Voltage-dependent anion channels (VDAC), Complex-IV, Cytochrome C and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) yielded altered expressions following penetrating TBI (PTBI) as compared to Sham. Therefore, our goal was to identify more precise normalization procedure in WB. Adult male Sprague Dawley rats (N = 6 rats/group) were used to perform PTBI, and the novel REVERT Total Protein (RTP) method was used to quantify mitochondrial protein load consistency between samples at 6 h and 24 h post-injury. Notably, the RTP method displayed superior protein normalization compared to HKPs method with higher sensitivity at both time-points between experimental groups. Our data favors application of RTP based normalization to accurately quantify protein expression where inconsistent HKPs may be evident in neuroscience research.


Subject(s)
Brain Injuries, Traumatic , Male , Animals , Rats , Rats, Sprague-Dawley , Blotting, Western , Mitochondrial Proteins , Mitochondria
4.
Neurosci Lett ; 810: 137364, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37391063

ABSTRACT

Although blast-induced traumatic brain injury (bTBI) has been designated as the signature injury of recent combat operations, its precise pathological mechanism(s) has not been identified thus far. Prior preclinical studies on bTBI demonstrated acute neuroinflammatory cascades which are known to be contributing to neurodegeneration. Danger-associated chemical patterns are released from the injured cells, which activate non-specific pattern recognition receptors, such as toll-like receptors (TLRs) leading to increased expression of inflammatory genes and release of cytokines. Upregulation of specific TLRs in the brain has been described as a mechanism of injury in diverse brain injury models unrelated to blast exposure. However, the expression profile of various TLRs in bTBI has not been investigated thus far. Hence, we have evaluated the expression of transcripts for TLR1-TLR10 in the brain of a gyrencephalic animal model of bTBI. We exposed ferrets to tightly coupled repeated blasts and determined the differential expression of TLRs (TLR1-10) by quantitative RT-PCR in multiple brain regions at 4 hr, 24 hr, 7 days and 28 days post-blast injury. The results obtained indicate that multiple TLRs are upregulated in the brain at 4 hr, 24 hr, 7 days and 28 days post-blast. Specifically, upregulation of TLR2, TLR4 and TLR9 was noted in different brain regions, suggesting that multiple TLRs might play a role in the pathophysiology of bTBI and that drugs that can inhibit multiple TLRs might have enhanced efficacy to attenuate brain damage and thereby improve bTBI outcome. Taken together, these results suggest that several TLRs are upregulated in the brain after bTBI and participate in the inflammatory response and thereby provide new insights into the disease pathogenesis. Therefore, inhibition of multiple TLRs, including TLR2, 4 and 9, simultaneously might be a potential therapeutic strategy for the treatment of bTBI.


Subject(s)
Blast Injuries , Brain Injuries, Traumatic , Brain Injuries , Animals , Ferrets , Up-Regulation , Toll-Like Receptor 2 , Toll-Like Receptor 1 , Brain , Brain Injuries, Traumatic/drug therapy , Brain Injuries/drug therapy , Brain Injuries/pathology , Toll-Like Receptors
5.
Free Radic Biol Med ; 198: 44-58, 2023 03.
Article in English | MEDLINE | ID: mdl-36758906

ABSTRACT

Traumatic Brain Injury (TBI) is caused by the external physical assaults damages the brain. It is a heterogeneous disorder that remains a leading cause of death and disability in the military and civilian population of the United States. Preclinical investigations of mitochondrial responses in TBI have ascertained that mitochondrial dysfunction is an acute indicator of cellular damage and plays a pivotal role in long-term injury progression through cellular excitotoxicity. The current study was designed to provide an in-depth evaluation of mitochondrial endpoints with respect to redox and calcium homeostasis, and cell death responses following penetrating TBI (PTBI). To evaluate these pathological cascades, anesthetized adult male rats (N = 6/group) were subjected to either 10% unilateral PTBI or Sham craniectomy. Animals were euthanized at 24 h post-PTBI, and purified mitochondrial fractions were isolated from the brain injury core and perilesional areas. Overall, increased reactive oxygen and nitrogen species (ROS/RNS) production, and elevated oxidative stress markers such as 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), and protein carbonyls (PC) were observed in the PTBI group compared to Sham. Mitochondrial antioxidants such as glutathione, peroxiredoxin (PRX-3), thioredoxin (TRX), nicotinamide adenine dinucleotide phosphate (NADPH), superoxide dismutase (SOD), and catalase (CAT) levels were significantly decreased after PTBI. Likewise, PTBI mitochondria displayed significant loss of Ca2+ homeostasis, early opening of mitochondrial permeability transition pore (mPTP), and increased mitochondrial swelling. Both, outer and inner mitochondrial membrane integrity markers, such as voltage-dependent anion channels (VDAC) and cytochrome c (Cyt C) expression were significantly decreased following PTBI. The apoptotic cell death was evidenced by significantly decreased B-cell lymphoma-2 (Bcl-2) and increased glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression after PTBI. Collectively, current results highlight the comprehensive picture of mitochondria-centric acute pathophysiological responses following PTBI, which may be utilized as novel prognostic indicators of disease progression and theragnostic indicators for evaluating neuroprotection therapeutics following TBI.


Subject(s)
Brain Injuries, Traumatic , Calcium , Rats , Male , Animals , Calcium/metabolism , Brain Injuries, Traumatic/pathology , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Oxidation-Reduction , Apoptosis/physiology , Mitochondria/metabolism
6.
Biomedicines ; 10(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35203460

ABSTRACT

Traumatic brain injury (TBI) is a heterogeneous disease in its origin, neuropathology, and prognosis, with no FDA-approved treatments. The pathology of TBI is complicated and not sufficiently understood, which is the reason why more than 30 clinical trials in the past three decades turned out unsuccessful in phase III. The multifaceted pathophysiology of TBI involves a cascade of metabolic and molecular events including inflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction. In this study, an open head TBI mouse model, induced by controlled cortical impact (CCI), was used to investigate the chronic protective effects of mitoquinone (MitoQ) administration 30 days post-injury. Neurological functions were assessed with the Garcia neuroscore, pole climbing, grip strength, and adhesive removal tests, whereas cognitive and behavioral functions were assessed using the object recognition, Morris water maze, and forced swim tests. As for molecular effects, immunofluorescence staining was conducted to investigate microgliosis, astrocytosis, neuronal cell count, and axonal integrity. The results show that MitoQ enhanced neurological and cognitive functions 30 days post-injury. MitoQ also decreased the activation of astrocytes and microglia, which was accompanied by improved axonal integrity and neuronal cell count in the cortex. Therefore, we conclude that MitoQ has neuroprotective effects in a moderate open head CCI mouse model by decreasing oxidative stress, neuroinflammation, and axonal injury.

7.
Exp Neurol ; 351: 113987, 2022 05.
Article in English | MEDLINE | ID: mdl-35065054

ABSTRACT

Traumatic brain injury (TBI) is a major cause of disability and death. Mild TBI (mTBI) constitutes ~75% of all TBI cases. Repeated exposure to mTBI (rmTBI), leads to the exacerbation of the symptoms compared to single mTBI. To date, there is no FDA-approved drug for TBI or rmTBI. This research aims to investigate possible rmTBI neurotherapy by targeting TBI pathology-related mechanisms. Oxidative stress is partly responsible for TBI/rmTBI neuropathologic outcomes. Thus, targeting oxidative stress may ameliorate TBI/rmTBI consequences. In this study, we hypothesized that mitoquinone (MitoQ), a mitochondria-targeted antioxidant, would ameliorate TBI/rmTBI associated pathologic features by mitigating rmTBI-induced oxidative stress. To model rmTBI, C57BL/6 mice were subjected to three concussive head injuries. MitoQ (5 mg/kg) was administered intraperitoneally to rmTBI+MitoQ mice twice per week over one month. Behavioral and cognitive outcomes were assessed, 30 days following the first head injury, using a battery of behavioral tests. Immunofluorescence was used to assess neuroinflammation and neuronal integrity. Also, qRT-PCR was used to evaluate the expression levels of antioxidant enzymes. Our findings indicated that MitoQ alleviated fine motor function and learning impairments caused by rmTBI. Mechanistically, MitoQ reduced astrocytosis, microgliosis, dendritic and axonal shearing, and increased the expression of antioxidant enzymes. MitoQ administration following rmTBI may represent an efficient approach to ameliorate rmTBI neurological and cellular outcomes with no observable side effects.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Brain Concussion/complications , Brain Concussion/drug therapy , Brain Concussion/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Dietary Supplements , Disease Models, Animal , Mice , Mice, Inbred C57BL , Organophosphorus Compounds , Oxidative Stress , Ubiquinone/analogs & derivatives
8.
J Neurotrauma ; 38(16): 2323-2334, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33544034

ABSTRACT

Mitochondrial dysfunction is a pivotal target for neuroprotection strategies for traumatic brain injury (TBI). However, comprehensive time-course evaluations of mitochondrial dysfunction are lacking in the pre-clinical penetrating TBI (PTBI) model. The current study was designed to characterize temporal responses of mitochondrial dysfunction from 30 min to 2 weeks post-injury after PTBI. Anesthetized adult male rats were subjected to either PTBI or sham craniectomy (n = 6 animals per group × 7 time points). Animals were euthanized at 30 min, 3 h, 6 h, 24 h, 3 days, 7 days, and 14 days post-PTBI, and mitochondria were isolated from the ipsilateral hemisphere of brain regions near the injury core (i.e., frontal cortex [FC] and striatum [ST]) and a more distant region from the injury core (i.e., hippocampus [HIP]). Mitochondrial bioenergetics parameters were measured in real time using the high-throughput procedures of the Seahorse Flux Analyzer (Agilent Technologies, Santa Clara, CA). The post-injury time course of FC + ST showed a biphasic mitochondrial bioenergetics dysfunction response, indicative of reduced adenosine triphosphate synthesis rate and maximal respiratory capacity after PTBI. An initial phase of energy crisis was detected at 30 min (-42%; p < 0.05 vs. sham), which resolved to baseline levels between 3 and 6 h (non-significant vs. sham). This was followed by a second and more robust phase of bioenergetics dysregulation detected at 24 h that remained unresolved out to 14 days post-injury (-55% to -90%; p < 0.05 vs. sham). In contrast, HIP mitochondria showed a delayed onset of mitochondrial dysfunction at 7 days (-74%; p < 0.05 vs. sham) that remained evident out to 14 days (-51%; p < 0.05 vs. sham) post-PTBI. Collectively, PTBI-induced mitochondrial dysfunction responses were time and region specific, evident differentially at the injury core and distant region of PTBI. The current results provide the basis that mitochondrial dysfunction may be targeted differentially based on region specificity post-PTBI. Even more important, these results suggest that therapeutic interventions targeting mitochondrial dysfunction may require extended dosing regimens to achieve clinical efficacy after TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Energy Metabolism/physiology , Head Injuries, Penetrating/metabolism , Mitochondria/physiology , Animals , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley , Time Factors
9.
J Aging Res ; 2020: 7232614, 2020.
Article in English | MEDLINE | ID: mdl-32318291

ABSTRACT

Mitochondria play a central role in energy homeostasis and act as regulatory checkpoints for downstream metabolic responses and cell senescence processes during an entire life span. Acute or chronic environmental toxicant exposures have shown deleterious organ-specific human health issues at various life stages. Since mitochondria are a prime target for ensuing cellular bioenergetics responses and senescence, it is essential to understand mitochondrial bioenergetic responses in different organs over multiple life stages. Therefore, in the present study, we evaluated mitochondrial bioenergetic parameters in the liver, lung, and heart in four diverse age groups (young: 1 month; adult: 4 months; middle-aged: 12 months; old-aged: 24 month) using male Brown Norway rats as a model of aging (n = 5 sample size/organ/age group) and compared them with our previously published results on brain. Real-time mitochondrial bioenergetic parameters (i.e., State III, State IV, and State V) were measured using the Seahorse Extracellular Flux Analyzer. Additionally, mitochondrial enzyme pyruvate dehydrogenase complex (PDHC), Complex I, Complex II, and Complex IV activities were measured using Synergy HT plate reader. Our results indicated that nearly in all parameters, significant age- and organ-specific interactions were observed. We observed age-specific declines in State III (i.e., ATP synthesis rate) responses in both the heart and lung, where opposite was observed in the liver as age advances. Across the age, the heart has highest enzyme activities than the liver and lung. Interestingly, heart and liver mitochondrial bioenergetic rates and enzyme activities remain higher than the lung, which specifies their higher metabolic capabilities than the lung. Amongst all, bioenergetic rates and enzyme activities in the lung remain lowest suggesting the lung may display higher vulnerability and lower resilience to environmental toxicants during aging than other organs tested here. Overall, these age- and organ-specific findings may facilitate a more contextualized understanding of mitochondrial bioenergetic outcomes when considering the interactions of age-related sensitivities with exposure to chemical stressors from the environment.

10.
Exp Neurol ; 327: 113243, 2020 05.
Article in English | MEDLINE | ID: mdl-32057797

ABSTRACT

Mitochondrial dysfunction is a pivotal event in many neurodegenerative disease states including traumatic brain injury (TBI) and spinal cord injury (SCI). One possible mechanism driving mitochondrial dysfunction is glutamate excitotoxicity leading to Ca2+-overload in neuronal or glial mitochondria. Therapies that reduce calcium overload and enhance bioenergetics have been shown to improve neurological outcomes. Pioglitazone, an FDA approved compound, has shown neuroprotective properties following TBI and SCI, but the underlying mechanism(s) are unknown. We hypothesized that the interaction between pioglitazone and a novel mitochondrial protein called mitoNEET was the basis for neuroprotection following CNS injury. We discovered that mitoNEET is an important mediator of Ca2+-mediated mitochondrial dysfunction and show that binding mitoNEET with pioglitazone can prevent Ca2+-induced dysfunction. By utilizing wild-type (WT) and mitoNEET null mice, we show that pioglitazone mitigates mitochondrial dysfunction and provides neuroprotection in WT mice, though produces no restorative effects in mitoNEET null mice. We also show that NL-1, a novel mitoNEET ligand, is neuroprotective following TBI in both mice and rats. These results support the crucial role of mitoNEET for mitochondrial bioenergetics, its importance in the neuropathological sequelae of TBI and the necessity of mitoNEET for pioglitazone-mediated neuroprotection. Since mitochondrial dysfunction is a pathobiological complication seen in other diseases such as diabetes, motor neuron disease and cancer, targeting mitoNEET may provide a novel mitoceutical target and therapeutic intervention for diseases that expand beyond TBI.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Energy Metabolism/drug effects , Iron-Binding Proteins/metabolism , Membrane Proteins/metabolism , Mitochondria/drug effects , Neuroprotective Agents/therapeutic use , Pioglitazone/therapeutic use , Animals , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Iron-Binding Proteins/genetics , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Mitochondria/metabolism , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Pioglitazone/pharmacology , Rats , Rats, Sprague-Dawley
11.
Front Neurol ; 10: 875, 2019.
Article in English | MEDLINE | ID: mdl-31474930

ABSTRACT

Current efficacious treatments for traumatic brain injury (TBI) are lacking. Establishment of a protective gut microbiota population offers a compelling therapeutic avenue, as brain injury induces disruptions in the composition of the gut microbiota, i.e., gut dysbiosis, which has been shown to contribute to TBI-related neuropathology and impaired behavioral outcomes. The gut microbiome is involved in the modulation of a multitude of cellular and molecular processes fundamental to the progression of TBI-induced pathologies including neuroinflammation, blood brain barrier permeability, immune system response, microglial activation, and mitochondrial dysfunction, as well as intestinal motility and permeability. Additionally, gut dysbiosis further aggravates behavioral impairments in animal models of TBI and spinal cord injury, as well as negatively affects health outcomes in murine stroke models. Recent studies indicate that microbiota transplants and probiotics ameliorate neuroanatomical damage and functional impairments in animal models of stroke and spinal cord injury. In addition, probiotics have been shown to reduce the rate of infection and time spent in intensive care of hospitalized patients suffering from brain trauma. Perturbations in the composition of the gut microbiota and its metabolite profile may also serve as potential diagnostic and theragnostic biomarkers for injury severity and progression. This review aims to address the etiological role of the gut microbiome in the biochemical, neuroanatomical, and behavioral/cognitive consequences of TBI, as well as explore the potential of gut microbiome manipulation in the form of probiotics as an effective therapeutic to ameliorate TBI-induced pathology and symptoms.

12.
Front Neurol ; 10: 605, 2019.
Article in English | MEDLINE | ID: mdl-31244764

ABSTRACT

Mitochondria constitute a central role in brain energy metabolism, and play a pivotal role in the development of secondary pathophysiology and subsequent neuronal cell death following traumatic brain injury (TBI). Under normal circumstances, the brain consumes glucose as the preferred energy source for adenosine triphosphate (ATP) production over ketones. To understand the comprehensive picture of substrate-specific mitochondrial bioenergetics responses following TBI, adult male rats were subjected to either 10% unilateral penetrating ballistic-like brain injury (PBBI) or sham craniectomy (n = 5 animals per group). At 24 h post-injury, mitochondria were isolated from pooled brain regions (frontal cortex and striatum) of the ipsilateral hemisphere. Mitochondrial bioenergetics parameters were measured ex vivo in the presence of four sets of metabolic substrates: pyruvate+malate (PM), glutamate+malate (GM), succinate (Succ), and ß-hydroxybutyrate+malate (BHBM). Additionally, mitochondrial matrix dehydrogenase activities [i.e., pyruvate dehydrogenase complex (PDHC), alpha-ketoglutarate dehydrogenase complex (α-KGDHC), and glutamate dehydrogenase (GDH)] and mitochondrial membrane-bound dehydrogenase activities [i.e., electron transport chain (ETC) Complex I, II, and IV] were compared between PBBI and sham groups. Furthermore, mitochondrial coenzyme contents, including NAD(t) and FAD(t), were quantitatively measured in both groups. Collectively, PBBI led to an overall significant decline in the ATP synthesis rates (43-50%; * p < 0.05 vs. sham) when measured using each of the four sets of substrates. The PDHC and GDH activities were significantly reduced in the PBBI group (42-53%; * p < 0.05 vs. sham), whereas no significant differences were noted in α-KGDHC activity between groups. Both Complex I and Complex IV activities were significantly reduced following PBBI (47-81%; * p < 0.05 vs. sham), whereas, Complex II activity was comparable between groups. The NAD(t) and FAD(t) contents were significantly decreased in the PBBI group (27-35%; * p < 0.05 vs. sham). The decreased ATP synthesis rates may be due to the significant reductions in brain mitochondrial dehydrogenase activities and coenzyme contents observed acutely following PBBI. These results provide a basis for the use of "alternative biofuels" for achieving higher ATP production following severe penetrating brain trauma.

13.
Clin J Pain ; 34(2): 168-177, 2018 02.
Article in English | MEDLINE | ID: mdl-28542026

ABSTRACT

OBJECTIVES: The study aim was to determine how peripheral trigeminal nerve injury affects mitochondrial respiration and to test efficacy of combined treatment with 2 Federal Drug Administration approved drugs with potential for improving mitochondrial bioenergetics, pain and anxiety-related behaviors in a chronic orofacial neuropathic pain mouse model. METHODS: Efficacy of (R)-(+)-4-amino-3-isoxazolidinone (D-cycloserine, DCS), an N-Methyl-D-aspartate antagonist/agonist, and Pioglitazone (PIO), a selective agonist of nuclear receptor peroxisome proliferator-activated receptor gamma was investigate in the trigeminal inflammatory compression (TIC) neuropathic nerve injury mouse model. Combined low doses of these drugs (80 mg/kg DCS and 100 mg/kg PIO) were given as a single bolus or daily for 7 days post-TIC to test ability to attenuate neuropathic nociceptive and associated cognitive dependent anxiety behaviors. In addition, beneficial effects of the DCS/PIO drug combination were explored ex vivo in isolated cortex/brainstem mitochondria at 28 weeks post-TIC. RESULTS: The DCS/PIO combination not only attenuated orofacial neuropathic pain and anxiety-related behaviors associated with trigeminal nerve injury, but it also improved mitochondrial bioenergetics. DISCUSSION: The DCS/PIO combination uncoupled mitochondrial respiration in the TIC model to improve cortical mitochondrial dysfunction, as well as reduced nociceptive and anxiety behaviors present in mice with centralized chronic neuropathic nerve injury. Combining these drugs could be a beneficial treatment for patients with depression, anxiety, or other psychological conditions due to their chronic pain status.


Subject(s)
Analgesics/pharmacology , Chronic Pain/drug therapy , Cycloserine/pharmacology , Facial Pain/drug therapy , Neuralgia/drug therapy , Pioglitazone/pharmacology , Trigeminal Nerve Injuries/drug therapy , Animals , Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Anxiety/metabolism , Brain/drug effects , Brain/metabolism , Chronic Pain/metabolism , Chronic Pain/psychology , Cognition/drug effects , Disease Models, Animal , Drug Therapy, Combination , Facial Pain/metabolism , Facial Pain/psychology , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Hyperalgesia/psychology , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Neuralgia/metabolism , Neuralgia/psychology , Random Allocation , Trigeminal Nerve Injuries/metabolism , Trigeminal Nerve Injuries/psychology
14.
Methods Mol Biol ; 1462: 597-610, 2016.
Article in English | MEDLINE | ID: mdl-27604740

ABSTRACT

Mitochondrial dysfunction is one of the key posttraumatic neuropathological events observed in various experimental models of traumatic brain injury (TBI). The extent of mitochondrial dysfunction has been associated with the severity and time course of secondary injury following brain trauma. Critically, several mitochondrial targeting preclinical drugs used in experimental TBI models have shown improved mitochondrial bioenergetics, together with cortical tissue sparing and cognitive behavioral outcome. Mitochondria, being a central regulator of cellular metabolic pathways and energy producer of cells, are of a great interest for researchers aiming to adopt cutting-edge methodology for mitochondrial bioenergetics assessment. The traditional way of mitochondrial bioenergetics analysis utilizing a Clark-type oxygen electrode (aka. oxytherm) is time-consuming and labor-intensive. In the present chapter, we describe an advanced and high-throughput method for mitochondrial bioenergetics assessments utilizing the Seahorse Biosciences XF(e)24 Flux Analyzer. This allows for simultaneous measurement of multiple samples with higher efficiency than the oxytherm procedure. This chapter provides helpful guidelines for conducting mitochondrial isolation and studying mitochondrial bioenergetics in brain tissue homogenates following experimental TBI.


Subject(s)
Energy Metabolism , High-Throughput Screening Assays , Mitochondria/metabolism , Trauma, Nervous System/etiology , Trauma, Nervous System/metabolism , Animals , Cell Respiration/drug effects , Drug Discovery , Drug Evaluation, Preclinical , Male , Metabolomics/methods , Mitochondria/drug effects , Oxidative Phosphorylation , Rats , Reactive Oxygen Species/metabolism , Trauma, Nervous System/drug therapy
15.
Neurobiol Aging ; 42: 25-34, 2016 06.
Article in English | MEDLINE | ID: mdl-27143418

ABSTRACT

Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bioenergetic parameters in 5 brain regions (brain stem [BS], frontal cortex, cerebellum, striatum, hippocampus [HIP]) of 4 diverse age groups (1 month [young], 4 months [adult], 12 months [middle-aged], 24 months [old age]) to understand age-related differences in selected brain regions and their possible contribution to age-related chemical sensitivity. Mitochondrial bioenergetic parameters and enzyme activities were measured under identical conditions across multiple age groups and brain regions in Brown Norway rats (n = 5/group). The results indicate age- and brain region-specific patterns in mitochondrial functional endpoints. For example, an age-specific decline in ATP synthesis (State III respiration) was observed in BS and HIP. Similarly, the maximal respiratory capacities (State V1 and V2) showed age-specific declines in all brain regions examined (young > adult > middle-aged > old age). Amongst all regions, HIP had the greatest change in mitochondrial bioenergetics, showing declines in the 4, 12, and 24-months age groups. Activities of mitochondrial pyruvate dehydrogenase complex and electron transport chain complexes I, II, and IV enzymes were also age and brain region specific. In general, changes associated with age were more pronounced with enzyme activities declining as the animals aged (young > adult > middle-aged > old age). These age- and brain region-specific observations may aid in evaluating brain bioenergetic impact on the age-related susceptibility to environmental chemical stressors.


Subject(s)
Aging/pathology , Brain/cytology , Organelle Biogenesis , Animals , Mitochondria/enzymology , Pyruvate Dehydrogenase Complex/metabolism , Rats
16.
Ann Neurol ; 78(1): 77-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25899847

ABSTRACT

OBJECTIVE: Ketone bodies (KB) are products of fatty acid oxidation and serve as essential fuels during fasting or treatment with the high-fat antiseizure ketogenic diet (KD). Despite growing evidence that KB exert broad neuroprotective effects, their role in seizure control has not been firmly demonstrated. The major goal of this study was to demonstrate the direct antiseizure effects of KB and to identify an underlying target mechanism. METHODS: We studied the effects of both the KD and KB in spontaneously epileptic Kcna1-null mice using a combination of behavioral, planar multielectrode, and standard cellular electrophysiological techniques. Thresholds for mitochondrial permeability transition (mPT) were determined in acutely isolated brain mitochondria. RESULTS: KB alone were sufficient to: (1) exert antiseizure effects in Kcna1-null mice, (2) restore intrinsic impairment of hippocampal long-term potentiation and spatial learning-memory defects in Kcna1-null mutants, and (3) raise the threshold for calcium-induced mPT in acutely prepared mitochondria from hippocampi of Kcna1-null animals. Targeted deletion of the cyclophilin D subunit of the mPT complex abrogated the effects of KB on mPT, and in vivo pharmacological inhibition and activation of mPT were found to mirror and reverse, respectively, the antiseizure effects of the KD in Kcna1-null mice. INTERPRETATION: The present data reveal the first direct link between mPT and seizure control, and provide a potential mechanistic explanation for the KD. Given that mPT is increasingly being implicated in diverse neurological disorders, our results suggest that metabolism-based treatments and/or metabolic substrates might represent a worthy paradigm for therapeutic development.


Subject(s)
3-Hydroxybutyric Acid/pharmacology , Anticonvulsants/pharmacology , Brain/drug effects , Diet, Ketogenic , Epilepsy, Temporal Lobe , Mitochondria/drug effects , Mitochondrial Membrane Transport Proteins/drug effects , 3-Hydroxybutyric Acid/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Electroencephalography , Ketone Bodies/pharmacology , Kv1.1 Potassium Channel/genetics , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Patch-Clamp Techniques
17.
Neurobiol Aging ; 36(5): 1903-13, 2015 May.
Article in English | MEDLINE | ID: mdl-25726361

ABSTRACT

Altered mitochondrial function in the basal ganglia has been hypothesized to underlie cellular senescence and promote age-related motor decline. We tested this hypothesis in a nonhuman primate model of human aging. Six young (6-8 years old) and 6 aged (20-25 years old) female Rhesus monkeys (Macaca mulatta) were behaviorally characterized from standardized video records. Additionally, we measured mitochondrial bioenergetics along with calcium buffering capacity in the substantia nigra and putamen (PUT) from both age groups. Our results demonstrate that the aged animals had significantly reduced locomotor activity and movement speed compared with younger animals. Moreover, aged monkeys had significantly reduced ATP synthesis capacity (in substantia nigra and PUT), reduced pyruvate dehydrogenase activity (in PUT), and reduced calcium buffering capacity (in PUT) compared with younger animals. Furthermore, this age-related decline in mitochondrial function in the basal ganglia correlated with decline in motor function. Overall, our results suggest that drug therapies designed to enhance altered mitochondrial function may help improve motor deficits in the elderly.


Subject(s)
Aging/metabolism , Aging/physiology , Basal Ganglia/metabolism , Basal Ganglia/ultrastructure , Energy Metabolism/physiology , Mitochondria/metabolism , Motor Disorders/metabolism , Motor Disorders/physiopathology , Adenosine Triphosphate/biosynthesis , Animals , Disease Models, Animal , Female , Macaca mulatta , Mitochondrial Membrane Transport Proteins , Mitochondrial Permeability Transition Pore , Motor Activity , Motor Disorders/etiology , Movement , Neurodegenerative Diseases , Pyruvate Dehydrogenase Complex/metabolism
18.
Exp Neurol ; 265: 84-93, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25562527

ABSTRACT

Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the relevance of mitochondria in these pathways is unknown. Here, we present evidence supporting the association of miRNA with hippocampal mitochondria, as well as changes in mitochondria-associated miRNA expression following a controlled cortical impact (CCI) injury in rats. Specifically, we found that the miRNA processing proteins Argonaute (AGO) and Dicer are present in mitochondria fractions from uninjured rat hippocampus, and immunoprecipitation of AGO associated miRNA from mitochondria suggests the presence of functional RNA-induced silencing complexes. Interestingly, RT-qPCR miRNA array studies revealed that a subset of miRNA is enriched in mitochondria relative to cytoplasm. At 12h following CCI, several miRNAs are significantly altered in hippocampal mitochondria and cytoplasm. In addition, levels of miR-155 and miR-223, both of which play a role in inflammatory processes, are significantly elevated in both cytoplasm and mitochondria. We propose that mitochondria-associated miRNAs may play an important role in regulating the response to TBI.


Subject(s)
Brain Injuries/metabolism , Hippocampus/metabolism , MicroRNAs/biosynthesis , Mitochondria/metabolism , Animals , Brain Injuries/pathology , Cells, Cultured , Cytoplasm/metabolism , Cytoplasm/pathology , Hippocampus/pathology , Male , Rats , Rats, Sprague-Dawley
19.
J Bioenerg Biomembr ; 47(1-2): 149-54, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25472025

ABSTRACT

The cell is known to be the most basic unit of life. However, this basic unit of life is dependent on the proper function of many intracellular organelles to thrive. One specific organelle that has vast implications on the overall health of the cell and cellular viability is the mitochondrion. These cellular power plants generate the energy currency necessary for cells to maintain homeostasis and function properly. Additionally, when mitochondria become dysfunctional, they can orchestrate the cell to undergo cell-death. Therefore, it is important to understand what insults can lead to mitochondrial dysfunction in order to promote cell health and increase cellular viability. After years of research, is has become increasingly accepted that age has a negative effect on mitochondrial bioenergetics. In support of this, we have found decreased mitochondrial bioenergetics with increased age in Sprague-Dawley rats. Within this same study we found a 200 to 600% increase in ROS production in old rats compared to young rats. Additionally, the extent of mitochondrial dysfunction and ROS production seems to be spatially defined affecting the spinal cord to a greater extent than certain regions of the brain. These tissue specific differences in mitochondrial function may be the reason why certain regions of the Central Nervous System, CNS, are disproportionately affected by aging and may play a pivotal role in specific age-related neurodegenerative diseases like Amyotrophic Lateral Sclerosis, ALS.


Subject(s)
Aging , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , Energy Metabolism , Mitochondria/metabolism , Spinal Cord/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/pathology , Humans , Mitochondria/pathology , Organ Specificity , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Spinal Cord/pathology
20.
Exp Neurol ; 257: 95-105, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24805071

ABSTRACT

Mitochondrial dysfunction is becoming a pivotal target for neuroprotective strategies following contusion spinal cord injury (SCI) and the pharmacological compounds that maintain mitochondrial function confer neuroprotection and improve long-term hindlimb function after injury. In the current study we evaluated the efficacy of cell-permeating thiol, N-acetylcysteine amide (NACA), a precursor of endogenous antioxidant glutathione (GSH), on mitochondrial function acutely, and long-term tissue sparing and hindlimb locomotor recovery following upper lumbar contusion SCI. Some designated injured adult female Sprague-Dawley rats (n=120) received either vehicle or NACA (75, 150, 300 or 600mg/kg) at 15min and 6h post-injury. After 24h the total, synaptic, and non-synaptic mitochondrial populations were isolated from a single 1.5cm spinal cord segment (centered at injury site) and assessed for mitochondrial bioenergetics. Results showed compromised total mitochondrial bioenergetics following acute SCI that was significantly improved with NACA treatment in a dose-dependent manner, with maximum effects at 300mg/kg (n=4/group). For synaptic and non-synaptic mitochondria, only 300mg/kg NACA dosage showed efficacy. Similar dosage (300mg/kg) also maintained mitochondrial GSH near normal levels. Other designated injured rats (n=21) received continuous NACA (150 or 300mg/kg/day) treatment starting at 15min post-injury for one week to assess long-term functional recovery over 6weeks post-injury. Locomotor testing and novel gait analyses showed significantly improved hindlimb function with NACA that were associated with increased tissue sparing at the injury site. Overall, NACA treatment significantly maintained acute mitochondrial bioenergetics and normalized GSH levels following SCI, and prolonged delivery resulted in significant tissue sparing and improved recovery of hindlimb function.


Subject(s)
Acetylcysteine/analogs & derivatives , Energy Metabolism/drug effects , Mitochondria/drug effects , Recovery of Function/drug effects , Spinal Cord Injuries/drug therapy , Acetylcysteine/therapeutic use , Animals , Disease Models, Animal , Double-Blind Method , Drug Delivery Systems , Electron Transport Chain Complex Proteins/metabolism , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/pathology , Lameness, Animal/drug therapy , Lameness, Animal/etiology , Mitochondria/enzymology , Motor Activity/drug effects , Oxygen Consumption/drug effects , Rats , Rats, Sprague-Dawley , Spinal Cord/pathology , Spinal Cord/ultrastructure , Spinal Cord Injuries/complications , Synapses/drug effects , Synapses/enzymology , Synapses/pathology , Synapses/ultrastructure , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...