Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurooncol ; 156(3): 635-644, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35032284

ABSTRACT

PURPOSE: Gliomas that spread along the white matter tracts of the corpus callosum to both hemispheres have traditionally been considered surgically challenging largely due to the relative complexity of safely achieving complete resections. We present a series of endoscopic-assisted resections of butterfly gliomas with post-operative radiological assessment of EOR and clinical outcome data. METHODS: Retrospective review of patients who underwent surgical resection of a butterfly glioma from 2007 to 2020. Butterfly gliomas were defined as gliomas, which appeared to arise from the corpus callosum with significant bilateral extension. All records were retrospectively reviewed with operative/clinical outcomes and complications recorded. RESULTS: 70 patients who underwent an endoscopic-assisted transcortical or interhemispheric approach for butterfly glioma resection met inclusion criteria. A unilateral transcortical approach was used in 86% of cases and an interhemispheric approach in 14%. The endoscope enhanced the visualization of the contralateral hemisphere and allowed for resection of tumor, not reached by standard microscopic visualization, in 100% of cases. 90% of resections resulted in greater than a 95% resection rate. Neurological deficits mostly consisted of motor (10%) and memory (6%) deficits and were most common with posterior tumors of the splenium. CONCLUSION: The endoscopic-assisted transcortical or interhemispheric approach for butterfly glioma resection is effective in achieving a greater than 95% resection with minimal complications. An angled approach allows careful maneuvering around complex anatomic structures and difficult corners, and should be examined further for its clinical benefits in a prospective manner.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Glioma/diagnostic imaging , Glioma/surgery , Humans , Neuroendoscopy , Retrospective Studies
2.
Int J Mol Sci ; 22(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34360766

ABSTRACT

Age-related hearing loss (ARHL) is the most common sensory disorder among older people, and yet, the treatment options are limited to medical devices such as hearing aids and cochlear implants. The high prevalence of ARHL mandates the development of treatment strategies that can prevent or rescue age-related cochlear degeneration. In this study, we investigated a novel pharmacological strategy based on inhibition of the adenosine A2A receptor (A2AR) in middle aged C57BL/6 mice prone to early onset ARHL. C57BL/6J mice were treated with weekly istradefylline (A2AR antagonist; 1 mg/kg) injections from 6 to 12 months of age. Auditory function was assessed using auditory brainstem responses (ABR) to tone pips (4-32 kHz). ABR thresholds and suprathreshold responses (wave I amplitudes and latencies) were evaluated at 6, 9, and 12 months of age. Functional outcomes were correlated with quantitative histological assessments of sensory hair cells. Cognitive function was assessed using the Morris water maze and the novel object recognition test, and the zero maze test was used to assess anxiety-like behaviour. Weekly injections of istradefylline attenuated ABR threshold shifts by approximately 20 dB at mid to high frequencies (16-32 kHz) but did not improve ABR suprathreshold responses. Istradefylline treatment improved hair cell survival in a turn-dependent manner, whilst the cognitive function was unaffected by istradefylline treatment. This study presents the first evidence for the rescue potential of istradefylline in ARHL and highlights the role of A2AR in development of age-related cochlear degeneration.


Subject(s)
Aging , Auditory Threshold/drug effects , Evoked Potentials, Auditory, Brain Stem/drug effects , Presbycusis , Purines/pharmacology , Animals , Male , Mice , Presbycusis/drug therapy , Presbycusis/pathology , Presbycusis/physiopathology
3.
Int J Mol Sci ; 22(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33374915

ABSTRACT

We and others have previously identified signalling pathways associated with the adenosine A1 receptor (A1R) as important regulators of cellular responses to injury in the cochlea. We have shown that the "post-exposure" treatment with adenosine A1R agonists confers partial protection against acoustic trauma and other forms of sensorineural hearing loss (SNHL). The aim of this study was to determine if increasing A1R responsiveness to endogenous adenosine would have the same otoprotective effect. This was achieved by pharmacological targeting of the Regulator of G protein Signalling 4 (RGS4). RGS proteins inhibit signal transduction pathways initiated by G protein-coupled receptors (GPCR) by enhancing GPCR deactivation and receptor desensitisation. A molecular complex between RGS4 and neurabin, an intracellular scaffolding protein expressed in neural and cochlear tissues, is the key negative regulator of A1R activity in the brain. In this study, Wistar rats (6-8 weeks) were exposed to traumatic noise (110 dBSPL, 8-16 kHz) for 2 h and a small molecule RGS4 inhibitor CCG-4986 was delivered intratympanically in a Poloxamer-407 gel formulation for sustained drug release 24 or 48 h after noise exposure. Intratympanic administration of CCG-4986 48 h after noise exposure attenuated noise-induced permanent auditory threshold shifts by up to 19 dB, whilst the earlier drug administration (24 h) led to even better preservation of auditory thresholds (up to 32 dB). Significant improvement of auditory thresholds and suprathreshold responses was linked to improved survival of sensorineural tissues and afferent synapses in the cochlea. Our studies thus demonstrate that intratympanic administration of CCG-4986 can rescue cochlear injury and hearing loss induced by acoustic overexposure. This research represents a novel paradigm for the treatment of various forms of SNHL based on regulation of GPCR.


Subject(s)
Hearing Loss, Noise-Induced/prevention & control , Hearing Loss, Sensorineural/prevention & control , RGS Proteins/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Auditory Threshold/drug effects , Cochlea/drug effects , Cochlea/metabolism , Evoked Potentials, Auditory, Brain Stem/drug effects , Hair Cells, Auditory/drug effects , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Sensorineural/metabolism , Male , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , RGS Proteins/metabolism , Rats, Wistar , Receptor, Adenosine A1/metabolism , Signal Transduction/drug effects
4.
Biol Sex Differ ; 10(1): 5, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30642393

ABSTRACT

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nervous system. Previous studies have shown fluctuations in expression levels of GABA signaling components-glutamic acid decarboxylase (GAD), GABA receptor (GABAR) subunit, and GABA transporter (GAT)-with increasing age and between sexes; however, this limited knowledge is highly based on animal models that produce inconsistent findings. This study is the first analysis of the age- and sex-specific changes of the GAD, GABAA/BR subunits, and GAT expression in the human primary sensory and motor cortices; superior (STG), middle (MTG), and inferior temporal gyrus (ITG); and cerebellum. Utilizing Western blotting, we found that the GABAergic system is relatively robust against sex and age-related differences in all brain regions examined. However, we observed several sex-dependent differences in GABAAR subunit expression in STG along with age-dependent GABAAR subunit and GAD level alteration. No significant age-related differences were found in α1, α2, α5, ß3, and γ2 subunit expression in the STG. However, we found significantly higher GABAAR α3 subunit expression in the STG in young males compared to old males. We observed a significant sex-dependent difference in α1 subunit expression: males presenting significantly higher levels compared to women across all stages of life in STG. Older females showed significantly lower α2, α5, and ß3 subunit expression compared to old males in the STG. These changes found in the STG might significantly influence GABAergic neurotransmission and lead to sex- and age-specific disease susceptibility and progression.


Subject(s)
Aging/metabolism , Cerebral Cortex/metabolism , Sex Characteristics , gamma-Aminobutyric Acid/metabolism , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Signal Transduction
5.
J Neurochem ; 145(5): 374-392, 2018 06.
Article in English | MEDLINE | ID: mdl-29485232

ABSTRACT

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABA type A receptors (GABAA Rs) are severely affected in Alzheimer's disease (AD). However, the distribution and subunit composition of GABAA Rs in the AD brain are not well understood. This is the first comprehensive study to show brain region- and cell layer-specific alterations in the expression of the GABAA R subunits α1-3, α5, ß1-3 and γ2 in the human AD hippocampus, entorhinal cortex and superior temporal gyrus. In late-stage AD tissue samples using immunohistochemistry we found significant alteration of all investigated GABAA Rs subunits except for α3 and ß1 that were well preserved. The most prominent changes include an increase in GABAA R α1 expression associated with AD in all layers of the CA3 region, in the stratum (str.) granulare and hilus of the dentate gyrus. We found a significant increase in GABAA R α2 expression in the str. oriens of the CA1-3, str. radiatum of the CA2,3 and decrease in the str. pyramidale of the CA1 region in AD cases. In AD there was a significant increase in GABAA R α5 subunit expression in str. pyramidale, str. oriens of the CA1 region and decrease in the superior temporal gyrus. We also found a significant decrease in the GABAA R ß3 subunit immunoreactivity in the str. oriens of the CA2, str. granulare and str. moleculare of the dentate gyrus. In conclusion, these findings indicate that the expression of the GABAA R subunits shows brain region- and layer-specific alterations in AD, and these changes could significantly influence and alter GABAA R function in the disease. Cover Image for this issue: doi: 10.1111/jnc.14179.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Receptors, GABA-A/biosynthesis , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Brain/pathology , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...