Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Islets ; 16(1): 2339558, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38607959

ABSTRACT

BACKGROUND: Studies suggest that short chain fatty acids (SCFAs), which are primarily produced from fermentation of fiber, regulate insulin secretion through free fatty acid receptors 2 and 3 (FFA2 and FFA3). As these are G-protein coupled receptors (GPCRs), they have potential therapeutic value as targets for treating type 2 diabetes (T2D). The exact mechanism by which these receptors regulate insulin secretion and other aspects of pancreatic ß cell function is unclear. It has been reported that glucose-dependent release of acetate from pancreatic ß cells negatively regulates glucose stimulated insulin secretion. While these data raise the possibility of acetate's potential autocrine action on these receptors, these findings have not been independently confirmed, and multiple concerns exist with this observation, particularly the lack of specificity and precision of the acetate detection methodology used. METHODS: Using Min6 cells and mouse islets, we assessed acetate and pyruvate production and secretion in response to different glucose concentrations, via liquid chromatography mass spectrometry. RESULTS: Using Min6 cells and mouse islets, we showed that both intracellular pyruvate and acetate increased with high glucose conditions; however, intracellular acetate level increased only slightly and exclusively in Min6 cells but not in the islets. Further, extracellular acetate levels were not affected by the concentration of glucose in the incubation medium of either Min6 cells or islets. CONCLUSIONS: Our findings do not substantiate the glucose-dependent release of acetate from pancreatic ß cells, and therefore, invalidate the possibility of an autocrine inhibitory effect on glucose stimulated insulin secretion.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Animals , Mice , Acetates , Glucose , Pyruvic Acid
2.
J Endocrinol ; 260(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38032704

ABSTRACT

Short-chain fatty acids (SCFAs) are key nutrients that play a diverse set of roles in physiological function, including regulating metabolic homeostasis. Generated through the fermentation of dietary fibers in the distal colon by the gut microbiome, SCFAs and their effects are partially mediated by their cognate receptors, including free fatty acid receptor 2 (FFA2). FFA2 is highly expressed in the intestinal epithelial cells, where its putative functions are controversial, with numerous in vivo studies relying on global knockout mouse models to characterize intestine-specific roles of the receptor. Here, we used the Villin-Cre mouse line to generate a novel, intestine-specific knockout mouse model for FFA2 (Vil-FFA2) to investigate receptor function within the intestine. Because dietary changes are known to affect the composition of the gut microbiome, and can thereby alter SCFA production, we performed an obesogenic challenge on male Vil-FFA2 mice and their littermate controls (FFA2-floxed, FFA2fl/fl) to identify physiological changes on a high-fat, high-sugar 'Western diet' (WD) compared to a low-fat control diet (CD). We found that the WD-fed Vil-FFA2 mice were transiently protected from the obesogenic effects of the WD and had lower fat mass and improved glucose homeostasis compared to the WD-fed FFA2fl/fl control group during the first half of the study. Additionally, major differences in respiratory exchange ratio and energy expenditure were observed in the WD-fed Vil-FFA2 mice, and food intake was found to be significantly reduced at multiple points in the study. Taken together, this study uncovers a novel role of intestinal FFA2 in mediating the development of obesity.


Subject(s)
Diet, Western , Obesity , Receptors, G-Protein-Coupled , Animals , Male , Mice , Diet, Western/adverse effects , Eating , Fatty Acids, Volatile/metabolism , Intestines/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...