Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496506

ABSTRACT

Adult T cell leukemia (ATL), caused by infection with human T cell leukemia virus type 1 (HTLV-1), is often complicated by hypercalcemia and osteolytic lesions. Therefore, we studied the communication between patient-derived ATL cells (ATL-PDX) and HTLV-1 immortalized CD4+ T cell lines (HTLV/T) with osteoclasts and their effects on bone mass in mice. Intratibial inoculation of some HTLV/T lead to a profound local decrease in bone mass similar to marrow-replacing ATL-PDX, despite the fact that few HTLV/T cells persisted in the bone. To study the direct effect of HTLV/T and ATL-PDX on osteoclasts, supernatants were added to murine and human osteoclast precursors. ATL-PDX supernatants from hypercalcemic patients promoted formation of mature osteoclasts, while those from HTLV/T were variably stimulatory, but had largely consistent effects between human and murine cultures. Interestingly, this osteoclastic activity did not correlate with expression of osteoclastogenic cytokine RANKL, suggesting an alternative mechanism. HTLV/T and ATL-PDX produce small extracellular vesicles (sEV), known to facilitate HTLV-1 infection. We hypothesized that these sEV also mediate bone loss by targeting osteoclasts. We isolated sEV from both HTLV/T and ATL-PDX, and found they carried most of the activity found in supernatants. In contrast, sEV from uninfected activated T cells had little effect. Analysis of sEV (both active and inactive) by mass spectrometry and electron microscopy confirmed absence of RANKL and intact virus. Viral proteins Tax and Env were only present in sEV from the active, osteoclast-stimulatory group, along with increased representation of proteins involved in osteoclastogenesis and bone resorption. sEV injected over mouse calvaria in the presence of low dose RANKL caused more osteolysis than RANKL alone. Thus, HTLV-1 infection of T cells can cause release of sEV with strong osteolytic potential, providing a mechanism beyond RANKL production that modifies the bone microenvironment, even in the absence of overt leukemia.

2.
J Virol ; 98(2): e0162323, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38193692

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus responsible for adult T-cell leukemia/lymphoma, a severe and fatal CD4+ T-cell malignancy. Additionally, HTLV-1 can lead to a chronic progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis. Unfortunately, the prognosis for HTLV-1-related diseases is generally poor, and effective treatment options are limited. In this study, we designed and synthesized a codon optimized HTLV-1 envelope (Env) mRNA encapsulated in a lipid nanoparticle (LNP) and evaluated its efficacy as a vaccine candidate in an established rabbit model of HTLV-1 infection and persistence. Immunization regimens included a prime/boost protocol using Env mRNA-LNP or control green fluorescent protein (GFP) mRNA-LNP. After immunization, rabbits were challenged by intravenous injection with irradiated HTLV-1 producing cells. Three rabbits were partially protected and three rabbits were completely protected against HTLV-1 challenge. These rabbits were then rechallenged 15 weeks later, and two rabbits maintained sterilizing immunity. In Env mRNA-LNP immunized rabbits, proviral load and viral gene expression were significantly lower. After viral challenge in the Env mRNA-LNP vaccinated rabbits, an increase in both CD4+/IFN-γ+ and CD8+/IFN-γ+ T-cells was detected when stimulating with overlapping Env peptides. Env mRNA-LNP elicited a detectable anti-Env antibody response after prime/boost vaccination in all animals and significantly higher levels of neutralizing antibody activity. Neutralizing antibody activity was correlated with a reduction in proviral load. These findings hold promise for the development of preventive strategies and therapeutic interventions against HTLV-1 infection and its associated diseases.IMPORTANCEmRNA vaccine technology has proven to be a viable approach for effectively triggering immune responses that protect against or limit viral infections and disease. In our study, we synthesized a codon optimized human T-cell leukemia virus type 1 (HTLV-1) envelope (Env) mRNA that can be delivered in a lipid nanoparticle (LNP) vaccine approach. The HTLV-1 Env mRNA-LNP produced protective immune responses against viral challenge in a preclinical rabbit model. HTLV-1 is primarily transmitted through direct cell-to-cell contact, and the protection offered by mRNA vaccines in our rabbit model could have significant implications for optimizing the development of other viral vaccine candidates. This is particularly important in addressing the challenge of enhancing protection against infections that rely on cell-to-cell transmission.


Subject(s)
Human T-lymphotropic virus 1 , Viral Vaccines , mRNA Vaccines , Animals , Humans , Rabbits , Antibodies, Neutralizing , Antibody Formation , Codon , Human T-lymphotropic virus 1/physiology , Leukemia, T-Cell , mRNA Vaccines/immunology , Neurodegenerative Diseases , RNA, Messenger/genetics , Viral Vaccines/immunology
3.
Int J Mol Sci ; 24(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685922

ABSTRACT

HTLV-1 is an oncogenic human retrovirus and the etiologic agent of the highly aggressive ATL malignancy. Two viral genes, Tax and Hbz, are individually linked to oncogenic transformation and play an important role in the pathogenic process. Consequently, regulation of HTLV-1 gene expression is a central feature in the viral lifecycle and directly contributes to its pathogenic potential. Herein, we identified the cellular transcription factor YBX1 as a binding partner for HBZ. We found YBX1 activated transcription and enhanced Tax-mediated transcription from the viral 5' LTR promoter. Interestingly, YBX1 also interacted with Tax. shRNA-mediated loss of YBX1 decreased transcript and protein abundance of both Tax and HBZ in HTLV-1-transformed T-cell lines, as well as Tax association with the 5' LTR. Conversely, YBX1 transcriptional activation of the 5' LTR promoter was increased in the absence of HBZ. YBX1 was found to be associated with both the 5' and 3' LTRs in HTLV-1-transformed and ATL-derived T-cell lines. Together, these data suggest that YBX1 positively influences transcription from both the 5' and 3' promoter elements. YBX1 is able to interact with Tax and help recruit Tax to the 5' LTR. However, through interactions with HBZ, YBX1 transcriptional activation of the 5' LTR is repressed.


Subject(s)
Human T-lymphotropic virus 1 , Y-Box-Binding Protein 1 , Humans , Genes, Viral , Human T-lymphotropic virus 1/genetics , Promoter Regions, Genetic , RNA, Small Interfering , Terminal Repeat Sequences/genetics , Y-Box-Binding Protein 1/genetics
4.
J Extracell Biol ; 2(7)2023 Jul.
Article in English | MEDLINE | ID: mdl-37547182

ABSTRACT

HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive, neuroinflammatory demyelinating condition of the spinal cord. We have previously shown that aberrant expression and activity of immune checkpoint (ICP) molecules such as PD-1 and PD-L1/PD-L2, negatively associates with the cytolytic potential of T cells in individuals with HAM/TSP. Interestingly, ICPs can exist in a soluble cell-free form and can be carried on extracellular vesicles (EVs) and exosomes (small EVs, <300nm) while maintaining their immunomodulatory activity. Therefore, we investigated the role of soluble and exosomal ICPs in HTLV-1 associated neuroinflammation. For the very first time, we demonstrate a unique elevated presence of several stimulatory (CD27, CD28, 4-1BB) and inhibitory (BTLA, CTLA-4, LAG-3, PD-1, PD-L2) ICP receptors in HAM/TSP sera, and in purified exosomes from a HAM/TSP-derived HTLV-1-producing (OSP2) cells. These ICPs were found to be co-localized with the endosomal sorting complex required for transport (ESCRT) pathway proteins and exhibited functional binding with their respective ligands. Viral proteins and cytokines (primarily IFNγ) were found to be present in purified exosomes. IFNγ exposure enhanced the release of ICP molecules while antiretroviral drugs (Azidothymidine and Lopinavir) significantly inhibited this process. HTLV-1 b-Zip protein (HBZ) has been linked to factors that enhance EV release and concurrent knockdown here led to the reduced expression of ESCRT associated genes (eg. Hrs, Vsp4, Alix, Tsg101) as well as abrogated the release of ICP molecules, suggesting HBZ involvement in this process. Moreso, exosomes from OSP2 cells adversely affected CD8 T-cell functions by dimishing levels of cytokines and cytotoxic factors. Collectively, these findings highlight exosome-mediated immunmodulation of T-cell functions with HBZ and ESCRT pathways as an underlying mechanism in the context of HTLV-1-induced neuroinflammation.

5.
PLoS Pathog ; 19(6): e1011459, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37327244

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic cause of adult T-cell leukemia/lymphoma (ATL) and encodes a viral oncoprotein (Hbz) that is consistently expressed in asymptomatic carriers and ATL patients, suggesting its importance in the development and maintenance of HTLV-1 leukemic cells. Our previous work found Hbz protein is dispensable for virus-mediated T-cell immortalization but enhances viral persistence. We and others have also shown that hbz mRNA promotes T-cell proliferation. In our current studies, we evaluated the role of hbz mRNA on HTLV-1-mediated immortalization in vitro as well as in vivo persistence and disease development. We generated mutant proviral clones to examine the individual contributions of hbz mRNA, hbz mRNA secondary structure (stem-loop), and Hbz protein. Wild-type (WT) and all mutant viruses produced virions and immortalized T-cells in vitro. Viral persistence and disease development were also evaluated in vivo by infection of a rabbit model and humanized immune system (HIS) mice, respectively. Proviral load and sense and antisense viral gene expression were significantly lower in rabbits infected with mutant viruses lacking Hbz protein compared to WT or virus with an altered hbz mRNA stem-loop (M3 mutant). HIS mice infected with Hbz protein-deficient viruses showed significantly increased survival times compared to animals infected with WT or M3 mutant virus. Altered hbz mRNA secondary structure, or loss of hbz mRNA or protein, has no significant effect on T-cell immortalization induced by HTLV-1 in vitro; however, the Hbz protein plays a critical role in establishing viral persistence and leukemogenesis in vivo.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Humans , Mice , Rabbits , Animals , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retroviridae Proteins/genetics , Retroviridae Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Viral Proteins/metabolism , Cell Line , Proviruses/genetics
6.
Pathogens ; 12(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375521

ABSTRACT

Infection with human T-cell leukemia virus type 1 (HTLV-1) can produce a spectrum of pathological effects ranging from inflammatory disorders to leukemia. In vivo, HTLV-1 predominantly infects CD4+ T-cells. Infectious spread within this population involves the transfer of HTLV-1 virus particles from infected cells to target cells only upon cell-to-cell contact. The viral protein, HBZ, was found to enhance HTLV-1 infection through transcriptional activation of ICAM1 and MYOF, two genes that facilitate viral infection. In this study, we found that HBZ upregulates the transcription of COL4A1, GEM, and NRP1. COL4A1 and GEM are genes involved in viral infection, while NRP1, which encodes neuropilin 1 (Nrp1), serves as an HTLV-1 receptor on target cells but has no reported function on HTLV-1-infected cells. With a focus on Nrp1, cumulative results from chromatin immunoprecipitation assays and analyses of HBZ mutants support a model in which HBZ upregulates NRP1 transcription by augmenting recruitment of Jun proteins to an enhancer downstream of the gene. Results from in vitro infection assays demonstrate that Nrp1 expressed on HTLV-1-infected cells inhibits viral infection. Nrp1 was found to be incorporated into HTLV-1 virions, and deletion of its ectodomain removed the inhibitory effect. These results suggest that inhibition of HTLV-1 infection by Nrp1 is caused by the ectodomain of Nrp1 extended from virus particles, which may inhibit the binding of virus particles to target cells. While HBZ has been found to enhance HTLV-1 infection using cell-based models, there may be certain circumstances in which activation of Nrp1 expression negatively impacts viral infection, which is discussed.

7.
PLoS Pathog ; 19(2): e1011202, 2023 02.
Article in English | MEDLINE | ID: mdl-36827461

ABSTRACT

The complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1), primarily infects CD4+ T-cells in vivo. Infectious spread within this cell population requires direct contact between virally-infected and target cells. The HTLV-1 accessory protein, HBZ, was recently shown to enhance HTLV-1 infection by activating intracellular adhesion molecule 1 (ICAM-1) expression, which promotes binding of infected cells to target cells and facilitates formation of a virological synapse. In this study we show that HBZ additionally enhances HTLV-1 infection by activating expression of myoferlin (MyoF), which functions in membrane fusion and repair and vesicle transport. Results from ChIP assays and quantitative reverse transcriptase PCR indicate that HBZ forms a complex with c-Jun or JunB at two enhancer sites within the MYOF gene and activates transcription through recruitment of the coactivator p300/CBP. In HTLV-1-infected T-cells, specific inhibition of MyoF using the drug, WJ460, or shRNA-mediated knockdown of MyoF reduced infection efficiency. This effect was associated with a decrease in cell adhesion and an intracellular reduction in the abundance of HTLV-1 envelope (Env) surface unit (SU) and transmembrane domain (TM). Lysosomal protease inhibitors partially restored SU levels in WJ460-treated cells, and SU localization to LAMP-2 sites was increased by MyoF knockdown, suggesting that MyoF restricts SU trafficking to lysosomes for degradation. Consistent with these effects, less SU was associated with cell-free virus particles. Together, these data suggest that MyoF contributes to HTLV-1 infection through modulation of Env trafficking and cell adhesion.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Human T-lymphotropic virus 1 , Retroviridae Proteins , Humans , Basic-Leucine Zipper Transcription Factors/genetics , CD4-Positive T-Lymphocytes/metabolism , Human T-lymphotropic virus 1/pathogenicity , Human T-lymphotropic virus 1/physiology , Retroviridae Proteins/metabolism
8.
Front Microbiol ; 14: 1101544, 2023.
Article in English | MEDLINE | ID: mdl-36819050

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is the infectious cause of adult T-cell leukemia/lymphoma (ATL), an extremely aggressive and fatal malignancy of CD4+ T-cells. Due to the chemotherapy-resistance of ATL and the absence of long-term therapy regimens currently available for ATL patients, there is an urgent need to characterize novel therapeutic targets against this disease. Protein arginine methyltransferase 5 (PRMT5) is a type II PRMT enzyme that is directly involved in the pathogenesis of multiple different lymphomas through the transcriptional regulation of relevant oncogenes. Recently, our group identified that PRMT5 is overexpressed in HTLV-1-transformed T-cell lines, during the HTLV-1-mediated T-cell immortalization process, and in ATL patient samples. The objective of this study was to determine the importance of PRMT5 on HTLV-1 infected cell viability, T-cell transformation, and ultimately disease induction. Inhibition of PRMT5 enzymatic activity with a commercially available small molecule inhibitor (EPZ015666) resulted in selective in vitro toxicity of actively proliferating and transformed T-cells. EPZ015666-treatment resulted in a dose-dependent increase in apoptosis in HTLV-1-transformed and ATL-derived cell lines compared to uninfected Jurkat T-cells. Using a co-culture model of infection and immortalization, we found that EPZ015666 is capable of blocking HTLV-1-mediated T-cell immortalization in vitro, indicating that PRMT5 enzymatic activity is essential for the HTLV-1 T-cell transformation process. Administration of EPZ015666 in both NSG xenograft and HTLV-1-infected humanized immune system (HIS) mice significantly improved survival outcomes. The cumulative findings of this study demonstrate that the epigenetic regulator PRMT5 is critical for the survival, transformation, and pathogenesis of HTLV-1, illustrating the value of this cellular enzyme as a potential therapeutic target for the treatment of ATL.

9.
Front Immunol ; 13: 954077, 2022.
Article in English | MEDLINE | ID: mdl-35958554

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is the causative infectious agent of adult T-cell leukemia/lymphoma (ATL) and chronic neurological disease. The disparity between silenced sense transcription versus constitutively active antisense (Hbz) transcription from the integrated provirus is not fully understood. The presence of an internal viral enhancer has recently been discovered in the Tax gene near the 3' long terminal repeat (LTR) of HTLV-1. In vitro, this enhancer has been shown to bind SRF and ELK-1 host transcription factors, maintain chromatin openness and viral gene transcription, and induce aberrant host gene transcription near viral integration sites. However, the function of the viral enhancer in the context of early HTLV-1 infection events remains unknown. In this study, we generated a mutant Enhancer virus (mEnhancer) and evaluated its effects on HTLV-1-mediated in vitro immortalization, establishment of persistent infection with an in vivo rabbit model, and disease development in a humanized immune system (HIS) mouse model. The mEnhancer virus was able to establish persistent infection in rabbits, and there were no significant differences in proviral load or HTLV-1-specific antibody responses over a 25-week study. However, rabbits infected with the mEnhancer virus had significantly decreased sense and antisense viral gene expression at 12-weeks post-infection. HIS mice infected with wt or mEnhancer virus showed similar disease progression, proviral load, and viral gene expression. While mEnhancer virus was able to sufficiently immortalize primary T-lymphocytes in cell culture, the immortalized cells had an altered phenotype (CD8+ T-cells), decreased proviral load, decreased sense and anti-sense gene expression, and altered cell cycle progression compared to HTLV-1.wt immortalized cells (CD4+ T-cells). These results suggest that the HTLV-1 enhancer element alone does not determine persistence or disease development but plays a pivotal role in regulating viral gene expression.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Animals , CD8-Positive T-Lymphocytes , Human T-lymphotropic virus 1/genetics , Humans , Leukemia-Lymphoma, Adult T-Cell/genetics , Mice , Models, Animal , Phenotype , Proviruses/genetics , Rabbits
10.
Front Microbiol ; 13: 897346, 2022.
Article in English | MEDLINE | ID: mdl-35602078

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus which causes a lifelong infection. An estimated 5-10 million persons are infected with HTLV-1 worldwide - a number which is likely higher due to lack of reliable epidemiological data. Most infected individuals remain asymptomatic; however, a portion of HTLV-1-positive individuals will develop an aggressive CD4+ T-cell malignancy called adult T-cell leukemia/lymphoma (ATL), or a progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Few treatment options exist for HAM/TSP outside of palliative care and ATL carries an especially poor prognosis given the heterogeneity of the disease and lack of effective long-term treatments. In addition, the risk of HTLV-1 disease development increases substantially if the virus is acquired early in life. Currently, there is no realistic cure for HTLV-1 infection nor any reliable measure to prevent HTLV-1-mediated disease development. The severity of HTLV-1-associated diseases (ATL, HAM/TSP) and limited treatment options highlights the need for development of a preventative vaccine or new therapeutic interventions. This review will highlight past HTLV-1 vaccine development efforts, the current molecular tools and animal models which might be useful in vaccine development, and the future possibilities of an effective HTLV-1 vaccine.

11.
Biosci Rep ; 42(3)2022 03 31.
Article in English | MEDLINE | ID: mdl-35169839

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is the only identified oncogenic human retrovirus. HTLV-1 infects approximately 5-10 million people worldwide and is the infectious cause of adult T-cell leukemia/lymphoma (ATL) and several chronic inflammatory diseases, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), dermatitis, and uveitis. Unlike other oncogenic retroviruses, HTLV-1 does not capture a cellular proto-oncogene or induce proviral insertional mutagenesis. HTLV-1 is a trans-activating retrovirus and encodes accessory proteins that induce cellular transformation over an extended period of time, upwards of several years to decades. Inarguably the most important viral accessory protein involved in transformation is Tax. Tax is a multifunctional protein that regulates several different pathways and cellular processes. This single viral protein is able to modulate viral gene expression, activate NF-κB signaling pathways, deregulate the cell cycle, disrupt apoptosis, and induce genomic instability. The summation of these processes results in cellular transformation and virus-mediated oncogenesis. Interestingly, HTLV-1 also encodes a protein called Hbz from the antisense strand of the proviral genome that counters many Tax functions in the infected cell, such as Tax-mediated viral transcription and NF-κB activation. However, Hbz also promotes cellular proliferation, inhibits apoptosis, and disrupts genomic integrity. In addition to viral proteins, there are other cellular factors such as MEF-2, superoxide-generating NAPDH oxidase 5-α (Nox5α), and PDLIM2 which have been shown to be critical for HTLV-1-mediated T-cell transformation. This review will highlight the important viral and cellular factors involved in HTLV-1 transformation and the available in vitro and in vivo tools used to study this complex process.


Subject(s)
Human T-lymphotropic virus 1 , Paraparesis, Tropical Spastic , Adult , Basic-Leucine Zipper Transcription Factors/genetics , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , Humans , LIM Domain Proteins , Microfilament Proteins , NF-kappa B/genetics , Retroviridae Proteins/genetics , Retroviridae Proteins/metabolism , Viral Proteins
12.
Viruses ; 14(1)2022 01 13.
Article in English | MEDLINE | ID: mdl-35062342

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that is the causative infectious agent of adult T-cell leukemia/lymphoma (ATL), an aggressive and fatal CD4+ T-cell malignancy, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic neurological disease. Disease progression in infected individuals is the result of HTLV-1-driven clonal expansion of CD4+ T-cells and is generally associated with the activities of the viral oncoproteins Tax and Hbz. A closely related virus, HTLV-2, exhibits similar genomic features and the capacity to transform T-cells, but is non-pathogenic. In vitro, HTLV-1 primarily immortalizes or transforms CD4+ T-cells, while HTLV-2 displays a transformation tropism for CD8+ T-cells. This distinct tropism is recapitulated in infected people. Through comparative studies, the genetic determinant for this divergent tropism of HTLV-1/2 has been mapped to the viral envelope (Env). In this review, we explore the emerging roles for Env beyond initial viral entry and examine current perspectives on its contributions to HTLV-1-mediated disease development.


Subject(s)
Gene Products, env/genetics , Gene Products, env/metabolism , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , Leukemia-Lymphoma, Adult T-Cell/virology , Virus Internalization , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , Cell Transformation, Viral/genetics , Gene Products, tax/genetics , Human T-lymphotropic virus 1/pathogenicity , Human T-lymphotropic virus 2/genetics , Humans , Oncogenes
13.
Front Microbiol ; 13: 1042761, 2022.
Article in English | MEDLINE | ID: mdl-36620051

ABSTRACT

The genome of retroviruses contains two promoter elements (called long terminal repeat or LTR) at the 5' and 3' end of their genome. Although the expression of retroviral genes generally depends on the promoter located in the 5' LTR, the 3' LTR also has promoter activity responsible for producing antisense transcripts. These natural antisense transcripts (NATs) are a class of RNA molecules transcribed from the opposite strand of a protein-coding gene. NATs have been identified in many prokaryotic and eukaryotic systems, as well as in human retroviruses such as human immunodeficiency virus type 1 (HIV-1) and HTLV-1/2 (human T-cell leukemia virus type 1/2). The antisense transcripts of HIV-1, HTLV-1, and HTLV-2 have been briefly characterized over the past several years. However, a complete appreciation of the role these transcripts play in the virus lifecycle and the cellular factors which regulate their transcription is still lacking. This review provides an overview of antisense transcription in human retroviruses with a specific focus on the MEF-2 family of transcription factors, the function(s) of the antisense protein products, and the application of antisense transcription models in therapeutics against HIV-1 and HTLV-1 in the context of co-infection.

14.
Front Cell Infect Microbiol ; 10: 580371, 2020.
Article in English | MEDLINE | ID: mdl-33425776

ABSTRACT

CRISPR editing of retroviral proviruses has been limited to HIV-1. We propose human T-cell leukemia virus type 1 (HTLV-1) as an excellent model to advance CRISPR/Cas9 genome editing technologies against actively expressing and latent retroviral proviruses. HTLV-1 is a tumorigenic human retrovirus responsible for the development of both leukemia/lymphoma (ATL) and a neurological disease (HAM/TSP). The virus immortalizes and persists in CD4+ T lymphocytes that survive for the lifetime of the host. The most important drivers of HTLV-1-mediated transformation and proliferation are the tax and hbz viral genes. Tax, transcribed from the plus-sense or genome strand, is essential for de novo infection and cellular immortalization. Hbz, transcribed from the minus-strand, supports proliferation and survival of infected cells in both its protein and mRNA forms. Abrogating the function or expression of tax and/or hbz by genome editing and mutagenic double-strand break repair may disable HTLV-1-infected cell growth/survival and prevent immune modulatory effects and ultimately HTLV-1-associated disease. In addition, the HTLV-1 viral genome is highly conserved with remarkable sequence homogeneity, both within the same host and even among different HTLV isolates. This offers more focused guide RNA targeting. In addition, there are several well-established animal models for studying HTLV-1 infection in vivo as well as cell immortalization in vitro. Therefore, studies with HTLV-1 may provide a better basis to assess and advance in vivo genome editing against retroviral infections.


Subject(s)
Gene Editing , Human T-lymphotropic virus 1 , Animals , Basic-Leucine Zipper Transcription Factors/genetics , CRISPR-Cas Systems , Gene Products, tax/genetics , Gene Products, tax/metabolism , Human T-lymphotropic virus 1/genetics , Humans , Retroviridae Proteins/genetics
15.
J Bone Oncol ; 19: 100257, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31871882

ABSTRACT

Adult T-cell leukemia/lymphoma has a unique relationship to bone including latency in the marrow, and development of bone invasion, osteolytic tumors and humoral hypercalcemia of malignancy. To study these conditions, we established and characterized a novel mouse model of ATL bone metastasis. Patient-derived ATL cell lines including three that do not express HTLV-1 oncoprotein Tax (ATL-ED, RV-ATL, TL-Om1), an in vitro transformed human T-cell line with high Tax expression (HT-1RV), and an HTLV-1 negative T-cell lymphoma (Jurkat) were injected intratibially into NSG mice, and were capable of proliferating and modifying the bone microenvironment. Radiography, µCT, histopathology, immunohistochemistry, plasma calcium concentrations, and qRT-PCR for several tumor-bone signaling mRNAs were performed. Luciferase-positive ATL-ED bone tumors allowed for in vivo imaging and visualization of bone tumor growth and metastasis over time. ATL-ED and HT-1RV cells caused mixed osteolytic/osteoblastic bone tumors, TL-Om1 cells exhibited minimal bone involvement and aggressive local invasion into the adjacent soft tissues, Jurkat cells proliferated within bone marrow and induced minimal bone cell response, and RV-ATL cells caused marked osteolysis. This mouse model revealed important mechanisms of human ATL bone neoplasms and will be useful to investigate biological interactions, potential therapeutic targets, and new bone-targeted agents for the prevention of ATL metastases to bone.

16.
Retrovirology ; 16(1): 44, 2019 12 21.
Article in English | MEDLINE | ID: mdl-31864373

ABSTRACT

BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL) and the neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The exact mechanism(s) through which latency and disease progression are regulated are not fully understood. CCCTC-binding factor (CTCF) is an 11-zinc finger, sequence-specific, DNA-binding protein with thousands of binding sites throughout mammalian genomes. CTCF has been shown to play a role in organization of higher-order chromatin structure, gene expression, genomic imprinting, and serve as a barrier to epigenetic modification. A viral CTCF-binding site (vCTCF-BS) was previously identified within the overlapping p12 (sense) and Hbz (antisense) genes of the HTLV-1 genome. Thus, upon integration, HTLV-1 randomly inserts a vCTCF-BS into the host genome. vCTCF-BS studies to date have focused primarily on HTLV-1 chronically infected or tumor-derived cell lines. In these studies, HTLV-1 was shown to alter the structure and transcription of the surrounding host chromatin through the newly inserted vCTCF-BS. However, the effects of CTCF binding in the early stages of HTLV-1 infection remains unexplored. This study examines the effects of the vCTCF-BS on HTLV-1-induced in vitro immortalization and in vivo viral persistence in infected rabbits. RESULTS: HTLV-1 and HTLV-1∆CTCF LTR-transactivation, viral particle production, and immortalization capacity were comparable in vitro. The total lymphocyte count, proviral load, and Hbz gene expression were not significantly different between HTLV-1 and HTLV-1∆CTCF-infected rabbits throughout a 12 week study. However, HTLV-1∆CTCF-infected rabbits displayed a significantly decreased HTLV-1-specific antibody response compared to HTLV-1-infected rabbits. CONCLUSIONS: Mutation of the HTLV-1 vCTCF-BS does not significantly alter T-lymphocyte transformation capacity or early in vivo virus persistence, but results in a decreased HTLV-1-specific antibody response during early infection in rabbits. Ultimately, understanding epigenetic regulation of HTLV-1 gene expression and pathogenesis could provide meaningful insights into mechanisms of immune evasion and novel therapeutic targets.


Subject(s)
CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , HTLV-I Infections/immunology , Human T-lymphotropic virus 1/pathogenicity , Leukocytes, Mononuclear/virology , Animals , Binding Sites , Cells, Cultured , Chromatin , Coculture Techniques , Epigenesis, Genetic , Gene Expression Regulation, Viral , Genome, Viral , HTLV-I Infections/virology , Humans , Male , Rabbits , Specific Pathogen-Free Organisms , T-Lymphocytes/immunology , T-Lymphocytes/virology
17.
JCI Insight ; 4(19)2019 10 03.
Article in English | MEDLINE | ID: mdl-31578308

ABSTRACT

Osteolytic bone lesions and hypercalcemia are common, serious complications in adult T cell leukemia/lymphoma (ATL), an aggressive T cell malignancy associated with human T cell leukemia virus type 1 (HTLV-1) infection. The HTLV-1 viral oncogene HBZ has been implicated in ATL tumorigenesis and bone loss. In this study, we evaluated the role of HBZ on ATL-associated bone destruction using HTLV-1 infection and disease progression mouse models. Humanized mice infected with HTLV-1 developed lymphoproliferative disease and continuous, progressive osteolytic bone lesions. HTLV-1 lacking HBZ displayed only modest delays to lymphoproliferative disease but significantly decreased disease-associated bone loss compared with HTLV-1-infected mice. Gene expression array of acute ATL patient samples demonstrated increased expression of RANKL, a critical regulator of osteoclasts. We found that HBZ regulated RANKL in a c-Fos-dependent manner. Treatment of HTLV-1-infected humanized mice with denosumab, a monoclonal antibody against human RANKL, alleviated bone loss. Using patient-derived xenografts from primary human ATL cells to induce lymphoproliferative disease, we also observed profound tumor-induced bone destruction and increased c-Fos and RANKL gene expression. Together, these data show the critical role of HBZ in driving ATL-associated bone loss through RANKL and identify denosumab as a potential treatment to prevent bone complications in ATL patients.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Leukemia-Lymphoma, Adult T-Cell/genetics , Leukemia-Lymphoma, Adult T-Cell/metabolism , Retroviridae Proteins/metabolism , Adult , Animals , Bone Resorption/genetics , Bone Resorption/metabolism , Bone Resorption/pathology , Bone and Bones/pathology , Disease Models, Animal , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Heterografts , Human T-lymphotropic virus 1 , Humans , Kaplan-Meier Estimate , Leukemia-Lymphoma, Adult T-Cell/pathology , Leukemia-Lymphoma, Adult T-Cell/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoclasts/metabolism , RANK Ligand/genetics , RANK Ligand/metabolism , Retroviridae Proteins/genetics , Transcriptome
18.
Cell Cycle ; 17(23): 2564-2576, 2018.
Article in English | MEDLINE | ID: mdl-30474474

ABSTRACT

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a mammalian dNTP hydrolase (dNTPase) and functions as a negative regulator in the efficacy of cytarabine treatment of acute myeloid leukemia (AML). We have reported that SAMHD1 knockout (KO) increased the activity of phosphoinositide 3-kinase (PI3K) in AML-derived THP-1 cells and attenuated their ability to form subcutaneous tumors in xenografted immunodeficient mice. However, the functional significance of SAMHD1 in controlling AML leukemogenesis remains unclear. Previous studies show that in vitro transformation of Madin-Darby canine kidney (MDCK) epithelial cells by the Jaagsiekte sheep retrovirus (JSRV) envelope protein requires activation of the PI3K/Akt oncogenic signaling pathway. Using this cell transformation model, we demonstrated that ectopic expression of wild-type human SAMHD1 or a dNTPase-defective SAMHD1 mutant (HD/AA) significantly inhibited MDCK cell transformation, but did not affect cell proliferation. To visualize and quantify THP-1 cell growth and metastasis in xenografted immunodeficient mice, we generated luciferase-expressing stable SAMHD1 KO THP-1 cells and control THP-1 cells, which were injected intravenously into immunodeficient mice. Bioluminescence imaging and quantification analysis of xenografted mice revealed that SAMHD1 KO cell-derived tumors had similar growth and metastatic potential compared with control cells at 35 days post-injection. However, mice xenografted with SAMHD1 KO cells showed greater survival compared with mice injected with control cells. Our data suggest that exogenous SAMHD1 expression suppresses in vitro cell transformation independently of its dNTPase activity, and that endogenous SAMHD1 affects AML tumorigenicity and disease progression in vivo.


Subject(s)
SAM Domain and HD Domain-Containing Protein 1/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Disease Progression , Dogs , G1 Phase Cell Cycle Checkpoints , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Madin Darby Canine Kidney Cells , Mice , Mutagenesis , SAM Domain and HD Domain-Containing Protein 1/deficiency , SAM Domain and HD Domain-Containing Protein 1/genetics , Transplantation, Heterologous
19.
Front Microbiol ; 9: 80, 2018.
Article in English | MEDLINE | ID: mdl-29441057

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) encodes a protein derived from the antisense strand of the proviral genome designated HBZ (HTLV-1 basic leucine zipper factor). HBZ is the only viral gene consistently expressed in infected patients and adult T-cell leukemia/lymphoma (ATL) tumor cell lines. It functions to antagonize many activities of the Tax viral transcriptional activator, suppresses apoptosis, and supports proliferation of ATL cells. Factors that regulate the stability of HBZ are thus important to the pathophysiology of ATL development. Using affinity-tagged protein and shotgun proteomics, we identified UBR5 as a novel HBZ-binding partner. UBR5 is an E3 ubiquitin-protein ligase that functions as a key regulator of the ubiquitin proteasome system in both cancer and developmental biology. Herein, we investigated the role of UBR5 in HTLV-1-mediated T-cell transformation and leukemia/lymphoma development. The UBR5/HBZ interaction was verified in vivo using over-expression constructs, as well as endogenously in T-cells. shRNA-mediated knockdown of UBR5 enhanced HBZ steady-state levels by stabilizing the HBZ protein. Interestingly, the related HTLV-2 antisense-derived protein, APH-2, also interacted with UBR5 in vivo. However, knockdown of UBR5 did not affect APH-2 protein stability. Co-immunoprecipitation assays identified ubiquitination of HBZ and knockdown of UBR5 resulted in a decrease in HBZ ubiquitination. MS/MS analysis identified seven ubiquitinated lysines in HBZ. Interestingly, UBR5 expression was upregulated in established T lymphocytic leukemia/lymphoma cell lines and the later stage of T-cell transformation in vitro. Finally, we demonstrated loss of UBR5 decreased cellular proliferation in transformed T-cell lines. Overall, our study provides evidence for UBR5 as a host cell E3 ubiquitin-protein ligase responsible for regulating HBZ protein stability. Additionally, our data suggests UBR5 plays an important role in maintaining the proliferative phenotype of transformed T-cell lines.

20.
Front Microbiol ; 9: 3107, 2018.
Article in English | MEDLINE | ID: mdl-30619186

ABSTRACT

HIV-1 infection can be successfully controlled with anti-retroviral therapy (ART), but is not cured. A reservoir of cells harboring transcriptionally silent integrated provirus is able to reestablish replicating infection if ART is stopped. Latently HIV-1 infected cells are rare, but may persist for decades. Several novel strategies have been proposed to reduce the latent reservoir, including DNA sequence targeted CRISPR/Cas9 genome editing of the HIV-1 provirus. A significant challenge to genome editing is the sequence diversity of HIV-1 quasispecies present in patients. The high level of quasispecies diversity will require targeting of multiple sites in the viral genome and personalized engineering of a CRISPR/Cas9 regimen. The challenges of CRISPR/Cas9 delivery to the rare latently infected cells and quasispecies sequence diversity suggest that effective genome editing of every provirus is unlikely. However, recent evidence from post-treatment controllers, patients with controlled HIV-1 viral burden following interruption of ART, suggests a correlation between a reduced number of intact proviral sequences and control of the virus. The possibility of reducing the intact proviral sequences in patients by a genome editing technology remains intriguing, but requires significant advances in delivery to infected cells and identification of effective target sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...