Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
PLoS One ; 19(4): e0300978, 2024.
Article in English | MEDLINE | ID: mdl-38625849

ABSTRACT

Cardiac fibrosis stands as one of the most critical conditions leading to lethal cardiac arrhythmias. Identifying the precise location of cardiac fibrosis is crucial for planning clinical interventions in patients with various forms of ventricular and atrial arrhythmias. As fibrosis impedes and alters the path of electrical waves, detecting fibrosis in the heart can be achieved through analyzing electrical signals recorded from its surface. In current clinical practices, it has become feasible to record electrical activity from both the endocardial and epicardial surfaces of the heart. This paper presents a computational method for reconstructing 3D fibrosis using unipolar electrograms obtained from both surfaces of the ventricles. The proposed method calculates the percentage of fibrosis in various ventricular segments by analyzing the local activation times and peak-to-peak amplitudes of the electrograms. Initially, the method was tested using simulated data representing idealized fibrosis in a heart segment; subsequently, it was validated in the left ventricle with fibrosis obtained from a patient with nonischemic cardiomyopathy. The method successfully determined the location and extent of fibrosis in 204 segments of the left ventricle model with an average error of 0.0±4.3% (N = 204). Moreover, the method effectively detected fibrotic scars in the mid-myocardial region, a region known to present challenges in accurate detection using electrogram amplitude as the primary criterion.


Subject(s)
Cardiomyopathies , Heart Ventricles , Humans , Cicatrix , Heart , Endocardium , Arrhythmias, Cardiac , Electrocardiography
2.
Comput Biol Med ; 171: 108138, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401451

ABSTRACT

Cardiac arrhythmias such as atrial fibrillation (AF) are recognised to be associated with re-entry or rotors. A rotor is a wave of excitation in the cardiac tissue that wraps around its refractory tail, causing faster-than-normal periodic excitation. The detection of rotor centres is of crucial importance in guiding ablation strategies for the treatment of arrhythmia. The most popular technique for detecting rotor centres is Phase Mapping (PM), which detects phase singularities derived from the phase of a signal. This method has been proven to be prone to errors, especially in regimes of fibrotic tissue and temporal noise. Recently, a novel technique called Directed Graph Mapping (DGM) was developed to detect rotational activity such as rotors by creating a network of excitation. This research aims to compare the performance of advanced PM techniques versus DGM for the detection of rotors using 64 simulated 2D meandering rotors in the presence of various levels of fibrotic tissue and temporal noise. Four strategies were employed to compare the performances of PM and DGM. These included a visual analysis, a comparison of F2-scores and distance distributions, and calculating p-values using the mid-p McNemar test. Results indicate that in the case of low meandering, fibrosis and noise, PM and DGM yield excellent results and are comparable. However, in the case of high meandering, fibrosis and noise, PM is undeniably prone to errors, mainly in the form of an excess of false positives, resulting in low precision. In contrast, DGM is more robust against these factors as F2-scores remain high, yielding F2≥0.931 as opposed to the best PM F2≥0.635 across all 64 simulations.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Humans , Heart , Fibrosis , Time Factors , Catheter Ablation/methods
3.
JACC Clin Electrophysiol ; 10(4): 637-650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38276927

ABSTRACT

BACKGROUND: Voltage mapping to detect ventricular scar is important for guiding catheter ablation, but the field-of-view of unipolar, bipolar, conventional, and microelectrodes as it relates to the extent of viable myocardium (VM) is not well defined. OBJECTIVES: The purpose of this study was to evaluate electroanatomic voltage-mapping (EAVM) with different-size electrodes for identifying VM, validated against high-resolution ex-vivo cardiac magnetic resonance (HR-LGE-CMR). METHODS: A total of 9 swine with early-reperfusion myocardial infarction were mapped with the QDOT microcatheter. HR-LGE-CMR (0.3-mm slices) were merged with EAVM. At each EAVM point, the underlying VM in multisize transmural cylinders and spheres was quantified from ex vivo CMR and related to unipolar and bipolar voltages recorded from conventional and microelectrodes. RESULTS: In each swine, 220 mapping points (Q1, Q3: 216, 260 mapping points) were collected. Infarcts were heterogeneous and nontransmural. Unipolar and bipolar voltage increased with VM volumes from >175 mm3 up to >525 mm3 (equivalent to a 5-mm radius cylinder with height >6.69 mm). VM volumes in subendocardial cylinders with 1- or 3-mm depth correlated poorly with all voltages. Unipolar voltages recorded with conventional and microelectrodes were similar (difference 0.17 ± 2.66 mV) and correlated best to VM within a sphere of radius 10 and 8 mm, respectively. Distance-weighting did not improve the correlation. CONCLUSIONS: Voltage increases with transmural volume of VM but correlates poorly with small amounts of VM, which limits EAVM in defining heterogeneous scar. Microelectrodes cannot distinguish thin from thick areas of subendocardial VM. The field-of-view for unipolar recordings for microelectrodes and conventional electrodes appears to be 8 to 10 mm, respectively, and unexpectedly similar.


Subject(s)
Myocardial Infarction , Animals , Swine , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Magnetic Resonance Imaging/methods , Gadolinium , Electrophysiologic Techniques, Cardiac/instrumentation , Electrophysiologic Techniques, Cardiac/methods , Microelectrodes , Electrodes , Myocardium/pathology , Contrast Media
4.
Cardiovasc Res ; 120(3): 249-261, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38048392

ABSTRACT

AIMS: Diseased atria are characterized by functional and structural heterogeneities, adding to abnormal impulse generation and propagation. These heterogeneities are thought to lie at the origin of fractionated electrograms recorded during sinus rhythm (SR) in atrial fibrillation (AF) patients and are assumed to be involved in the onset and perpetuation (e.g. by re-entry) of this disorder. The underlying mechanisms, however, remain incompletely understood. Here, we tested whether regions of dense fibrosis could create an electrically isolated conduction pathway (EICP) in which re-entry could be established via ectopy and local block to become 'trapped'. We also investigated whether this could generate local fractionated electrograms and whether the re-entrant wave could 'escape' and cause a global tachyarrhythmia due to dynamic changes at a connecting isthmus. METHODS AND RESULTS: To precisely control and explore the geometrical properties of EICPs, we used light-gated depolarizing ion channels and patterned illumination for creating specific non-conducting regions in silico and in vitro. Insight from these studies was used for complementary investigations in virtual human atria with localized fibrosis. We demonstrated that a re-entrant tachyarrhythmia can exist locally within an EICP with SR prevailing in the surrounding tissue and identified conditions under which re-entry could escape from the EICP, thereby converting a local latent arrhythmic source into an active driver with global impact on the heart. In a realistic three-dimensional model of human atria, unipolar epicardial pseudo-electrograms showed fractionation at the site of 'trapped re-entry' in coexistence with regular SR electrograms elsewhere in the atria. Upon escape of the re-entrant wave, acute arrhythmia onset was observed. CONCLUSIONS: Trapped re-entry as a latent source of arrhythmogenesis can explain the sudden onset of focal arrhythmias, which are able to transgress into AF. Our study might help to improve the effectiveness of ablation of aberrant cardiac electrical signals in clinical practice.


Subject(s)
Atrial Fibrillation , Humans , Heart Atria , Ion Channels , Tachycardia/pathology , Fibrosis
5.
Phys Rev Lett ; 131(20): 208401, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38039450

ABSTRACT

Excitable media are ubiquitous in nature, and in such systems the local excitation tends to self-organize in traveling waves, or in rotating spiral-shaped patterns in two or three spatial dimensions. Examples include waves during a pandemic or electrical scroll waves in the heart. Here we show that such phenomena can be extended to a space of four or more dimensions and propose that connections of excitable elements in a network setting can be regarded as additional spatial dimensions. Numerical simulations are performed in four dimensions using the FitzHugh-Nagumo model, showing that the vortices rotate around a two-dimensional surface which we define as the superfilament. Evolution equations are derived for general superfilaments of codimension two in an N-dimensional space, and their equilibrium configurations are proven to be minimal surfaces. We suggest that biological excitable systems, such as the heart or brain which have nonlocal connections can be regarded, at least partially, as multidimensional excitable media and discuss further possible studies in this direction.

6.
Phys Rev E ; 108(3-1): 034218, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849154

ABSTRACT

Electrical turbulence in the heart is considered the culprit of cardiac disease, including the fatal ventricular fibrillation. Optogenetics is an emerging technology that has the capability to produce action potentials of cardiomyocytes to affect the electric wave propagation in cardiac tissue, thereby possessing the potential to control the turbulence, by shining a rotating spiral pattern onto the tissue. In this paper, we present a method to reorder and synchronize electrical turbulence through optogenetics. A generic two-variable reaction-diffusion model and a simplified three-variable ionic cardiac model are used. We discuss cases involving either global or partial illumination.


Subject(s)
Lighting , Myocytes, Cardiac , Computer Simulation , Action Potentials/physiology , Models, Cardiovascular
7.
Sci Rep ; 13(1): 14863, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684404

ABSTRACT

Gap junctions (GJs) formed of connexin (Cx) protein are the main conduits of electrical signals in the heart. Studies indicate that the transitional zone of the atrioventricular (AV) node contains heterotypic Cx43/Cx45 GJ channels which are highly sensitive to transjunctional voltage (Vj). To investigate the putative role of Vj gating of Cx43/Cx45 channels, we performed electrophysiological recordings in cell cultures and developed a novel mathematical/computational model which, for the first time, combines GJ channel Vj gating with a model of membrane excitability to simulate a spread of electrical pulses in 2D. Our simulation and electrophysiological data show that Vj transients during the spread of cardiac excitation can significantly affect the junctional conductance (gj) of Cx43/Cx45 GJs in a direction- and frequency-dependent manner. Subsequent simulation data indicate that such pulse-rate-dependent regulation of gj may have a physiological role in delaying impulse propagation through the AV node. We have also considered the putative role of the Cx43/Cx45 channel gating during pathological impulse propagation. Our simulation data show that Vj gating-induced changes in gj can cause the drift and subsequent termination of spiral waves of excitation. As a result, the development of fibrillation-like processes was significantly reduced in 2D clusters, which contained Vj-sensitive Cx43/Cx45 channels.


Subject(s)
Arrhythmias, Cardiac , Connexin 43 , Humans , Atrioventricular Node , Gap Junctions , Connexins
8.
Front Physiol ; 14: 1201260, 2023.
Article in English | MEDLINE | ID: mdl-37565147

ABSTRACT

Torsade de Pointes is a polymorphic ventricular tachycardia which is as yet incompletely understood. While the onset of a TdP episode is generally accepted to be caused by triggered activity, the mechanisms for the perpetuation is still under debate. In this study, we analysed data from 54 TdP episodes divided over 5 dogs (4 female, 1 male) with chronic atrioventricular block. Previous research on this dataset showed both reentry and triggered activity to perpetuate the arrhythmia. 13 of those TdP episodes showed reentry as part of the driving mechanism of perpetuating the episode. The remaining 41 episodes were purely ectopic. Reentry was the main mechanism in long-lasting episodes (>14 beats), while focal sources were responsible for maintaining shorter episodes. Building on these results, we re-analysed the data using directed graph mapping This program uses principles from network theory and a combination of positional data and local activation times to identify reentry loops and focal sources within the data. The results of this study are twofold. First, concerning reentry loops, we found that on average non-terminating (NT) episodes (≥10 s) show significantly more simultaneous reentry loops than self-terminating (ST) TdP (<10 s). Non-terminating episodes have on average 2.72 ± 1.48 simultaneous loops, compared to an average of 1.33 ± 0.66 for self-terminating episodes. In addition, each NT episode showed a presence of (bi-)ventricular loops between 10.10% and 69.62% of their total reentry duration. Compared to the ST episodes, only 1 in 4 episodes (25%) showed (bi-)ventricular reentry, lasting only 7.12% of its total reentry duration. This suggests that while focal beats trigger TdP, macro-reentry and multiple simultaneous localized reentries are the major drivers of long-lasting episodes. Second, using heatmaps, we found focal sources to occur in preferred locations, instead of being distributed randomly. This may have implications on treatment if such focal origins can be disabled reliably.

9.
Front Physiol ; 14: 1213218, 2023.
Article in English | MEDLINE | ID: mdl-37492643

ABSTRACT

Intracardiac electrograms (iEGMs) are time traces of the electrical potential recorded close to the heart muscle. We calculate unipolar and bipolar iEGMs analytically for a myocardial slab with parallel myofibers and validate them against numerical bidomain simulations. The analytical solution obtained via the method of mirrors is an infinite series of arctangents. It goes beyond the solid angle theory and is in good agreement with the simulations, even though bath loading effects were not accounted for in the analytical calculation. At a large distance from the myocardium, iEGMs decay as 1/R (unipolar), 1/R 2 (bipolar and parallel), and 1/R 3 (bipolar and perpendicular to the endocardium). At the endocardial surface, there is a mathematical branch cut. Here, we show how a thicker myocardium generates iEGMs with larger amplitudes and how anisotropy affects the iEGM width and amplitude. If only the leading-order term of our expansion is retained, it can be determined how the conductivities of the bath, torso, myocardium, and myofiber direction together determine the iEGM amplitude. Our results will be useful in the quantitative interpretation of iEGMs, the selection of thresholds to characterize viable tissues, and for future inferences of tissue parameters.

10.
Phys Rev E ; 107(1-1): 014215, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797919

ABSTRACT

One of the most interesting dynamics of rotating spiral waves in an excitable medium is meandering. The tip of a meandering spiral wave moves along a complex trajectory, which often takes the shape of an epitrochoid or hypotrochoid with inward or outward petals. The cycle lengths (CLs) of a meandering spiral wave are not constant; rather, they depend on the meandering dynamics. In this paper, we show that the CLs take two mean values, outside T^{out} and inside T^{in} the meandering trajectory with a ratio of T^{in}/T^{out}=(n+1)/n for the inward and (n-1)/n for the outward petals, where n is the number of petals in the tip trajectory. We illustrate this using four models of excitable media and prove this result. These formulas are shown to be suitable for a meandering spiral wave in an anatomical model of the heart. We also show that the effective periods of overdrive pacing of meandering spiral waves depend on the electrode location relative to the tip trajectory. Overall, our approach can be used to study the meandering pattern from the CL data; it should work for any type of dynamics that produces complex tip trajectories of the spiral wave, for example, for a drift due to heterogeneity.

11.
Phys Rev E ; 108(6-1): 064406, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38243456

ABSTRACT

Nonlinear waves were found in various types of physical, chemical, and biological excitable media, e.g., in heart muscle. They can form three-dimensional (3D) vortices, called scroll waves, that are of particular significance in the heart, as they underlie lethal cardiac arrhythmias. Thus controlling the behavior of scroll waves is interesting and important. Recently, the optical feedback control procedure for two-dimensional vortices, called spiral waves, was developed. It can induce directed linear drift of spiral waves in optogenetically modified cardiac tissue. However, the extension of this methodology to 3D scroll waves is nontrivial, as optogenetic signals only penetrate close to the surface of cardiac tissue. Here we present a study of this extension in a two-variable reaction-diffusion model and in a detailed model of cardiac tissue. We show that the success of the control procedure is determined by the tension of the scroll wave filament. In tissue with positive filament tension the control procedure works in all cases. However, in the case of negative filament tension for a sufficiently large medium, instabilities occur and make drift and control of scroll waves impossible. Because in normal cardiac tissue the filament tension is assumed to be positive, we conclude that the proposed optical feedback scheme can be a robust method in inducing the linear drift of scroll waves that can control their positions in cardiac tissue.


Subject(s)
Heart , Models, Cardiovascular , Humans , Feedback , Heart/physiology , Arrhythmias, Cardiac , Myocardium
12.
Phys Rev E ; 106(2-1): 024405, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109896

ABSTRACT

Spiral waves occur in various types of excitable media and their dynamics determine the spatial excitation patterns. An important type of spiral wave dynamics is drift, as it can control the position of a spiral wave or eliminate a spiral wave by forcing it to the boundary. In theoretical and experimental studies of the Belousov-Zhabotinsky reaction, it was shown that the most direct way to induce the controlled drift of spiral waves is by application of an external electric field. Mathematically such drift occurs due to the onset of additional gradient terms in the Laplacian operator describing excitable media. However, this approach does not work for cardiac excitable tissue, where an external electric field does not result in gradient terms. In this paper, we propose a method of how to induce a directed linear drift of spiral waves in cardiac tissue, which can be realized as an optical feedback control in tissue where photosensitive ion channels are expressed. We illustrate our method by using the FitzHugh-Nagumo model for cardiac tissue and the generic model of photosensitive ion channels. We show that our method works for continuous and discrete light sources and can effectively move spiral waves in cardiac tissue, or eliminate them by collisions with the boundary or with another spiral wave. We finally implement our method by using a biophysically motivated photosensitive ion channel model included to the Luo-Rudy model for cardiac cells and show that the proposed feedback control also induces directed linear drift of spiral waves in a wide range of light intensities.


Subject(s)
Heart , Computer Simulation , Feedback
13.
PLoS One ; 17(7): e0271351, 2022.
Article in English | MEDLINE | ID: mdl-35819963

ABSTRACT

Electrical waves that rotate in the heart organize dangerous cardiac arrhythmias. Finding the region around which such rotation occurs is one of the most important practical questions for arrhythmia management. For many years, the main method for finding such regions was so-called phase mapping, in which a continuous phase was assigned to points in the heart based on their excitation status and defining the rotation region as a point of phase singularity. Recent analysis, however, showed that in many rotation regimes there exist phase discontinuities and the region of rotation must be defined not as a point of phase singularity, but as a phase defect line. In this paper, we use this novel methodology and perform a comparative study of three different phase definitions applied to in silico data and to experimental data obtained from optical voltage mapping experiments on monolayers of human atrial myocytes. We introduce new phase defect detection algorithms and compare them with those that appeared in literature already. We find that the phase definition is more important than the algorithm to identify sudden spatial phase variations. Sharp phase defect lines can be obtained from a phase derived from local activation times observed during one cycle of arrhythmia. Alternatively, similar quality can be obtained from a reparameterization of the classical phase obtained from observation of a single timeframe of transmembrane potential. We found that the phase defect line length was (35.9 ± 6.2)mm in the Fenton-Karma model and (4.01 ± 0.55)mm in cardiac human atrial myocyte monolayers. As local activation times are obtained during standard clinical cardiac mapping, the methods are also suitable to be applied to clinical datasets. All studied methods are publicly available and can be downloaded from an institutional web-server.


Subject(s)
Arrhythmias, Cardiac , Heart Atria , Algorithms , Arrhythmias, Cardiac/diagnosis , Humans , Myocytes, Cardiac , Pericardium
14.
Phys Rev E ; 105(4-1): 044210, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35590553

ABSTRACT

Resonant drift of nonlinear spiral waves occurs in various types of excitable media under periodic stimulation. Recently a novel methodology of optogenetics has emerged, which allows to affect excitability of cardiac cells and tissues by optical stimuli. In this paper we study if resonant drift of spiral waves in the heart can be induced by a homogeneous weak periodic optical stimulation of cardiac tissue. We use a two-variable and a detailed model of cardiac tissue and add description of depolarizing and hyperpolarizing optogenetic ionic currents. We show that weak periodic optical stimulation at a frequency equal to the natural rotation frequency of the spiral wave induces resonant drift for both depolarizing and hyperpolarizing optogenetic currents. We quantify these effects and study how the speed of the drift and its direction depend on the initial conditions. We also derive analytical formulas based on the response function theory which correctly predict the drift velocity and its trajectory. We conclude that optogenetic methodology can be used for control of spiral waves in cardiac tissue and discuss its possible applications.

15.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628272

ABSTRACT

Antibiotic-resistant bacteria are recognized as one of the leading causes of death in the world. We proposed and successfully tested peptides with a new mechanism of antimicrobial action "protein silencing" based on directed co-aggregation. The amyloidogenic antimicrobial peptide (AAMP) interacts with the target protein of model or pathogenic bacteria and forms aggregates, thereby knocking out the protein from its working condition. In this review, we consider antimicrobial effects of the designed peptides on two model organisms, E. coli and T. thermophilus, and two pathogenic organisms, P. aeruginosa and S. aureus. We compare the amino acid composition of proteomes and especially S1 ribosomal proteins. Since this protein is inherent only in bacterial cells, it is a good target for studying the process of co-aggregation. This review presents a bioinformatics analysis of these proteins. We sum up all the peptides predicted as amyloidogenic by several programs and synthesized by us. For the four organisms we studied, we show how amyloidogenicity correlates with antibacterial properties. Let us especially dwell on peptides that have demonstrated themselves as AMPs for two pathogenic organisms that cause dangerous hospital infections, and in which the minimal inhibitory concentration (MIC) turned out to be comparable to the MIC of gentamicin sulfate. All this makes our study encouraging for the further development of AAMP. The hybrid peptides may thus provide a starting point for the antibacterial application of amyloidogenic peptides.


Subject(s)
Antimicrobial Cationic Peptides , Antimicrobial Peptides , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacteria , Escherichia coli , Pseudomonas aeruginosa , Staphylococcus aureus
16.
Phys Rev E ; 105(1-1): 014214, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193299

ABSTRACT

Spiral waves lead to dangerous arrhythmias in the cardiac system. In 2015 Burton et al. demonstrated the reversal of the spiral wave chirality through the rotating spiral-shaped illumination on the optogenetically modified cardiac monolayers. We show that this process entails the recreation of a spiral wave. We show how this methodology can be used to control and create the desired spatial excitation pattern. We found that the control is sensitive to the area of illuminated region but independent of the phase difference of the existing spiral wave and the applied spiral-shaped light. We also discovered that our methodology can temporarily resynchronize a turbulent system. The results offer numerical evidence for the control of spatial pattern in biological excitable systems with optogenetics.

17.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35008951

ABSTRACT

The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.


Subject(s)
Antimicrobial Peptides/pharmacology , Bacterial Proteins/chemistry , Ribosomal Proteins/chemistry , Staphylococcus aureus , Amino Acid Sequence , Amyloidogenic Proteins/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Antimicrobial Peptides/chemistry , Cell Survival/drug effects , Cell-Penetrating Peptides/chemical synthesis , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Dose-Response Relationship, Drug , Fibroblasts , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs , Staphylococcus aureus/drug effects
18.
Phys Rev E ; 104(3-1): 034408, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654159

ABSTRACT

Nonlinear waves of electrical excitation initiate cardiac contraction. Abnormal wave propagation in the heart, e.g., spiral waves, can lead to sudden cardiac arrest. This study analyzed the dynamics of spiral waves under the influence of an instability called negative filament tension, and examined how the spiral waves can be eliminated through high-frequency pacing. A generic anatomical model of the left ventricle of the human heart and the Aliev-Panfilov model for cardiac tissue were used. The study showed that the source of such arrhythmia is elongated filaments with lengths that can be 10-20 times greater than the characteristic thickness of the heart wall. In anisotropic tissue, the filament elongated before it was annihilated at the base of the heart. The spiral waves were eliminated through overdrive pacing with stimulation periods from 0.8 to 0.95 relative to the spiral wave period. The minimum time for the expulsion was about 10 s.


Subject(s)
Heart Ventricles , Models, Cardiovascular , Anisotropy , Arrhythmias, Cardiac , Heart , Humans
19.
Phys Rev Lett ; 127(9): 098101, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506203

ABSTRACT

Cardiac fibrosis is a well-known arrhythmogenic condition which can lead to sudden cardiac death. Physically, fibrosis can be viewed as a large number of small obstacles in an excitable medium, which may create nonlinear wave turbulence or reentry. The relation between the specific texture of fibrosis and the onset of reentry is of great theoretical and practical importance. Here, we present a conceptual framework which combines functional aspects of propagation manifested as conduction blocks, with reentry wavelength and geometrical clusters of fibrosis. We formulate them into the single concept of minimal functional cluster and through extensive simulations show that it characterizes the path of reexcitation accurately, and importantly its size distribution quantitatively predicts the reentry probability for different fibrosis densities and tissue excitabilities.


Subject(s)
Heart Conduction System/physiopathology , Models, Cardiovascular , Myocardium/pathology , Action Potentials , Cluster Analysis , Fibrosis/pathology , Fibrosis/physiopathology , Humans , Nonlinear Dynamics
20.
Front Physiol ; 12: 639149, 2021.
Article in English | MEDLINE | ID: mdl-34366877

ABSTRACT

Ambient temperature has a profound influence on cellular electrophysiology through direct control over the gating mechanisms of different ion channels. In the heart, low temperature is known to favor prolongation of the action potential. However, not much is known about the influence of temperature on other important characterization parameters such as the resting membrane potential (RMP), excitability, morphology and characteristics of the action potential (AP), restitution properties, conduction velocity (CV) of signal propagation, etc. Here we present the first, detailed, systematic in silico study of the electrophysiological characterization of cardiomyocytes from different regions of the normal human atria, based on the effects of ambient temperature (5-50°C). We observe that RMP decreases with increasing temperature. At ~ 48°C, the cells lose their excitability. Our studies show that different parts of the atria react differently to the same changes in temperature. In tissue simulations a drop in temperature correlated positively with a decrease in CV, but the decrease was region-dependent, as expected. In this article we show how this heterogeneous response can provide an explanation for the development of a proarrhythmic substrate during mild hypothermia. We use the above concept to propose a treatment strategy for atrial fibrillation that involves severe hypothermia in specific regions of the heart for a duration of only ~ 200 ms.

SELECTION OF CITATIONS
SEARCH DETAIL
...