Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemiol Infect ; 148: e56, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32178752

ABSTRACT

Varicella is an acute respiratory infectious diseases, with high transmissibility and quick dissemination. In this study, an SEIR (susceptible-exposed-infected-recovered) dynamic model was established to explore the optimal prevention and control measures according to the epidemiological characteristics about varicella outbreak in a school in a central city of China. Berkeley Madonna 8.3.18 and Microsoft Office Excel 2010 software were employed for the model simulation and data management, respectively. The result showed that the simulated result of SEIR model agreed well with the reported data when ß (infected rate) equal to 0.067. Models showed that the cumulative number of cases was only 13 when isolation adopted when the infected individuals were identified (assuming isolation rate was up to 100%); the cumulative number of cases was only two and the TAR (total attack rate) was 0.56% when the vaccination coefficient reached 50%. The cumulative number of cases did not change significantly with the change of efficiency of ventilation and disinfection, but the peak time was delayed; when δ (vaccination coefficient) = 0.1, m (ventilation efficiency) = 0.7 or δ = 0.2, m = 0.5 or δ = 0.3, m = 0.1 or δ = 0.4 and above, the cumulative number of cases would reduce to one case and TAR would reduce to 0.28% with combined interventions. Varicella outbreak in school could be controlled through strict isolation or vaccination singly; combined interventions have been adopted when the vaccination coefficient was low.


Subject(s)
Chickenpox , Disease Outbreaks , Models, Statistical , Chickenpox/epidemiology , Chickenpox/prevention & control , Chickenpox Vaccine , Child , Child, Preschool , China , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data , Female , Humans , Male , Patient Isolation , Schools , Vaccination/statistics & numerical data
2.
Epidemiol Infect ; 147: e70, 2019 01.
Article in English | MEDLINE | ID: mdl-30868977

ABSTRACT

Chickenpox is a common acute and highly contagious disease in childhood; moreover, there is currently no targeted treatment. Carrying out an early warning on chickenpox plays an important role in taking targeted measures in advance as well as preventing the outbreak of the disease. In recent years, the infectious disease dynamic model has been widely used in the research of various infectious diseases. The logistic differential equation model can well demonstrate the epidemic characteristics of epidemic outbreaks, gives the point at which the early epidemic rate changes from slow to fast. Therefore, our study aims to use the logistic differential equation model to explore the epidemic characteristics and early-warning time of varicella. Meanwhile, the data of varicella cases were collected from first week of 2008 to 52nd week of 2017 in Changsha. Finally, our study found that the logistic model can be well fitted with varicella data, besides the model illustrated that there are two peaks of varicella at each year in Changsha City. One is the peak in summer-autumn corresponding to the 8th-38th week; the other is in winter-spring corresponding to the time from the 38th to the seventh week next year. The 'epidemic acceleration week' average value of summer-autumn and winter-spring are about the 16th week (ranging from the 15th to 17th week) and 45th week (ranging from the 44th to 47th week), respectively. What is more, taking warning measures during the acceleration week, the preventive effect will be delayed; thus, we recommend intervene during recommended warning weeks which are the 15th and 44th weeks instead.


Subject(s)
Chickenpox/epidemiology , Disease Outbreaks , China/epidemiology , Humans , Logistic Models
SELECTION OF CITATIONS
SEARCH DETAIL
...