Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biomaterials ; 299: 122147, 2023 08.
Article in English | MEDLINE | ID: mdl-37182418

ABSTRACT

Oral protein vaccines are mainly used to prevent the infection of intestinal pathogens in clinic due to their high safety and strong compliance. However, it is necessary to design the efficient delivery systems to overcome the harsh gastrointestinal environment in the application process. Here we established a programmable oral bacterial hydrogel system for spatiotemporally controllable production and release of nanovaccines. The system was divided into three parts: (1) Engineered bacteria were encapsulated in chitosan-sodium alginate microcapsules, which offered protection against the extreme acid conditions in the stomach. (2) Microcapsules were dissolved, and then engineered bacteria were released and colonized in the intestine. (3) The release of nanovaccines was controlled periodically by a synchronous lysis genetic circuit for tumor immunotherapy. Compared to control groups, tumor volume of subcutaneous tumor-bearing mice treated with bacterial microgels releasing optimized nanovaccine was almost inhibited by 75% and T cell response was activated at least 2-fold. We believe that this programmable bacterial hydrogel will offer a promising way for the application of oral nanovaccines.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Mice , Animals , Capsules , Hydrogels , Bacteria , Immunotherapy , Neoplasms/therapy
2.
Ionics (Kiel) ; 29(5): 2021-2029, 2023.
Article in English | MEDLINE | ID: mdl-37073286

ABSTRACT

To cope with the easy transmissibility of the avian influenza A virus subtype H1N1, a biosensor was developed for rapid and highly sensitive electrochemical immunoassay. Based on the principle of specific binding between antibody and virus molecules, the active molecule-antibody-adapter structure was formed on the surface of an Au NP substrate electrode; it included a highly specific surface area and good electrochemical activity for selective amplification detection of the H1N1 virus. The electrochemical test results showed that the BSA/H1N1 Ab/Glu/Cys/Au NPs/CP electrode was used for the electrochemical detection of the H1N1 virus with a sensitivity of 92.1 µA (pg/mL)-1 cm2, LOD of 0.25 pg/ml, linear ranges of 0.25-5 pg/mL, and linearity of (R 2 = 0.9846). A convenient H1N1 antibody-based electrochemical electrode for the molecular detection of the H1N1 virus will be of great use in the field of epidemic prevention and raw poultry protection. Supplementary Information: The online version contains supplementary material available at 10.1007/s11581-023-04944-w.

3.
Biomaterials ; 294: 122005, 2023 03.
Article in English | MEDLINE | ID: mdl-36701997

ABSTRACT

Microbes regulate brain function through the gut-brain axis, deriving the technology to modulate the gut-brain axis in situ by engineered probiotics. Optogenetics offers precise and flexible strategies for controlling the functions of probiotics in situ. However, the poor penetration of most frequently used short wavelength light has limited the application of optogenetic probiotics in the gut. Herein, a red-light optogenetic gut probiotic was applied for drug production and delivery and regulation of the host behaviors. Firstly, a Red-light Optogenetic E. coli Nissle 1917 strain (ROEN) that could respond to red light and release drug product by light-controlled lysis was constructed. The remaining optical power of red light after 3 cm tissue was still able to initiate gene expression of ROEN and produce about approximately 3-fold induction efficiency. To give full play to the in vivo potential of ROEN, its responsive ability of the penetrated red light was tested, and its encapsulation was realized by PH-sensitive alginate microcapsules for further oral administration. The function of ROEN for gut-brain regulation was realized by releasing Exendin-4 fused with anti-neonatal Fc receptor affibody. Neuroprotection and behavioral regulation effects were evaluated in the Parkinson's disease mouse model, after orally administration of ROEN delivering Exendin-4 under optogenetic control in the murine gut. The red-light optogenetic probiotic might be a perspective platform for in situ drug delivery and gut-brain axis regulation.


Subject(s)
Brain-Gut Axis , Probiotics , Animals , Mice , Escherichia coli/genetics , Exenatide , Brain/metabolism
5.
ACS Appl Mater Interfaces ; 14(41): 46351-46361, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36201723

ABSTRACT

Engineering bacteria can achieve targeted and controllable cancer therapy using synthetic biology technology and the characteristics of tumor microenvironment. Besides, the accurate tumor diagnosis and visualization of the treatment process are also vital for bacterial therapy. In this paper, a light control engineered bacteria system based on upconversion nanoparticles (UCNP)-mediated time-resolved imaging (TRI) was constructed for colorectal cancer theranostic and therapy. UCNP with different luminous lifetimes were separately modified with the tumor targeting molecule (folic acid) or anaerobic bacteria (Nissle 1917, EcN) to realize the co-localization of tumor tissues, thus improving the diagnostic accuracy based on TRI. In addition, blue light was used to induce engineered bacteria (EcN-pDawn-φx174E/TRAIL) lysis and the release of tumor apoptosis-related inducing ligand (TRAIL), thus triggering tumor cell death. In vitro and in vivo results indicated that this system could achieve accurate tumor diagnosis and light-controlled cancer therapy. EcN-pDawn-φx174E/TRAIL with blue light irradiation could inhibit 53% of tumor growth in comparison to that without blue light irradiation (11.8%). We expect that this engineered bacteria system provides a new technology for intelligent bacterial therapy and the construction of cancer theranostics.


Subject(s)
Nanoparticles , Neoplasms , Humans , Bacteria , Folic Acid , Ligands , Neoplasms/diagnostic imaging , Neoplasms/therapy , Optogenetics/methods , Tumor Microenvironment
6.
Mediators Inflamm ; 2022: 4322092, 2022.
Article in English | MEDLINE | ID: mdl-35693111

ABSTRACT

IL-21/IL-21R was documented to participate in the regulation of multiple infection and inflammation. During Chlamydia muridarum (C. muridarum) respiratory infection, our previous study had revealed that the absence of this signal induced enhanced resistance to infection with higher protective Th1/Th17 immune responses. Here, we use the murine model of C. muridarum respiratory infection and IL-21R deficient mice to further identify a novel role of IL-21/IL-21R in neutrophilic inflammation. Resistant IL-21R-/- mice showed impaired neutrophil recruitment to the site of infection. In the absence of IL-21/IL-21R, pulmonary neutrophils also exhibited reduced activation status, including lower CD64 expression, MPO activity, and neutrophil-produced protein production. These results correlated well with the decrease of neutrophil-related chemokines (KC and MIP-2), inflammatory cytokines (IL-6, IL-1ß, and TNF-α), and TLR/MyD88 pathway mediators (TLR2, TLR4, and MyD88) in infected lungs of IL-21R-/- mice than normal mice. Complementarily, decreased pulmonary neutrophil infiltration, activity, and levels of neutrophilic chemotactic factors and TLR/MyD88 signal in infected lungs can be corrected by rIL-21 administration. These results revealed that IL-21/IL-21R may aggravate the neutrophil inflammation through regulating TLR/MyD88 signal pathway during chlamydial respiratory infection.


Subject(s)
Chlamydia Infections , Chlamydia muridarum , Interleukin-21 Receptor alpha Subunit/metabolism , Animals , Immunity , Inflammation/pathology , Interleukins , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/metabolism , Neutrophils/metabolism , Signal Transduction
7.
Biomaterials ; 287: 121619, 2022 08.
Article in English | MEDLINE | ID: mdl-35700622

ABSTRACT

Subcutaneous administration of sustained-release formulations is a common strategy for protein drugs, which avoids first pass effect and has high bioavailability. However, conventional sustained-release strategies can only load a limited amount of drug, leading to insufficient durability. Herein, we developed microcapsules based on engineered bacteria for sustained release of protein drugs. Engineered bacteria were carried in microcapsules for subcutaneous administration, with a production-lysis circuit for sustained protein production and release. Administrated in diabetic rats, engineered bacteria microcapsules was observed to smoothly release Exendin-4 for 2 weeks and reduce blood glucose. In another example, by releasing subunit vaccines with bacterial microcomponents as vehicles, engineered bacterial microcapsules activated specific immunity in mice and achieved tumor prevention. The engineered bacteria microcapsules have potential to durably release protein drugs and show versatility on the size of drugs. It might be a promising design strategy for long-acting in situ drug factory.


Subject(s)
Diabetes Mellitus, Experimental , Hydrogels , Rats , Mice , Animals , Delayed-Action Preparations/therapeutic use , Hydrogels/therapeutic use , Capsules , Diabetes Mellitus, Experimental/drug therapy
8.
ACS Nano ; 16(4): 6049-6063, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35362965

ABSTRACT

The discovery of the gut-brain axis has proven that brain functions can be affected by the gut microbiota's metabolites, so there are significant opportunities to explore new tools to regulate gut microbiota and thus work on the brain functions. Meanwhile, engineered bacteria as oral live biotherapeutic agents to regulate the host's healthy homeostasis have attracted much attention in microbial therapy. However, whether this strategy is able to remotely regulate the host's brain function in vivo has not been investigated. Here, we engineered three blue-light-responsive probiotics as oral live biotherapeutic agents. They are spatiotemporally delivered and controlled by the upconversion optogenetic micro-nano system. This micro-nano system promotes the small intestine targeting and production of the exogenous L. lactis in the intestines, which realizes precise manipulation of brain functions including anxiety behavior, Parkinson's disease, and vagal afferent. The noninvasive and real-time probiotic intervention strategy makes the communiation from the gut to the host more controllable, which will enable the potential for engineered microbes accurately and effectively regulating a host's health.


Subject(s)
Gastrointestinal Microbiome , Lactococcus lactis , Probiotics , Lactococcus lactis/genetics , Optogenetics , Brain-Gut Axis , Bacteria/metabolism
9.
ACS Synth Biol ; 11(3): 1167-1177, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35175748

ABSTRACT

For the biomedical application of engineered bacteria, strictly regulating the function of engineered bacteria has always been the goal pursued. However, the existing regulation methods do not meet the needs of the in vivo application of engineered bacteria. Therefore, the exploration of the precise regulation of engineered bacteria is necessary. Herein, heat-sensitive engineered bacteria that can respond to thermal stimuli within 30 min were constructed, and the precise control of functions was verified in the intestines of various model organisms (including C. elegans, bees, and mice). Subsequently, heat-sensitive engineered bacteria were shown to colonize the mouse tumor microenvironment. Finally, thermal stimulation was proven to control engineered bacteria to produce the therapeutic protein tumor necrosis factor α (TNF-α) in the tumor. After three heat stimulation treatments, the growth of the tumor was significantly inhibited, suggesting that heat can be used as a strategy to precisely control engineered bacteria in vivo.


Subject(s)
Bacteria , Neoplasms , Animals , Bacteria/genetics , Caenorhabditis elegans , Hot Temperature , Mice , Microorganisms, Genetically-Modified , Neoplasms/therapy , Tumor Microenvironment , Tumor Necrosis Factor-alpha/biosynthesis
10.
ACS Nano ; 15(4): 7040-7052, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33819424

ABSTRACT

Ulcerative colitis (UC) is a relapsing disorder characterized by chronic inflammation of the intestinal tract. However, the home care of UC based on remote monitoring, due to the operational complexity and time-consuming procedure, restrain its widespread applications. Here we constructed an optotheranostic nanosystem for self-diagnosis and long-acting mitigations of UC at home. The system included two major modules: (i) A disease prescreening module mediated by smartphone optical sensing. (ii) Disease real-time intervention module mediated by an optogenetic engineered bacteria system. Recombinant Escherichia coli Nissle 1917 (EcN) secreted interleukin-10 (IL-10) could downregulate inflammatory cascades and matrix metalloproteinases; it is a candidate for use in the therapeutic intervention of UC. The results showed that the Detector was able to analyze, report, and share the detection results in less than 1 min, and the limit of detection was 15 ng·mL-1. Besides, the IL-10-secreting EcN treatment suppressed the intestinal inflammatory response in UC mice and protected the intestinal mucosa against injury. The optotheranostic nanosystems enabled solutions to diagnose and treat disease at home, which promotes a mobile health service development.


Subject(s)
Colitis, Ulcerative , Home Care Services , Animals , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/therapy , Humans , Intestinal Mucosa , Intestines , Mice , Optogenetics
11.
J Immunol ; 206(9): 2160-2169, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33863788

ABSTRACT

IL-27, a heterodimeric cytokine of the IL-12 family, has diverse influences on the development of multiple inflammatory diseases. In this study, we identified the protective role of IL-27/IL-27R in host defense against Chlamydia muridarum respiratory infection and further investigated the immunological mechanism. Our results showed that IL-27 was involved in C. muridarum infection and that IL-27R knockout mice (WSX-1-/- mice) suffered more severe disease, with greater body weight loss, higher chlamydial loads, and more severe inflammatory reactions in the lungs than C57BL/6 wild-type mice. There were excessive IL-17-producing CD4+ T cells and many more neutrophils, neutrophil-related proteins, cytokines, and chemokines in the lungs of WSX-1-/- mice than in wild-type mice following C. muridarum infection. In addition, IL-17/IL-17A-blocking Ab treatment improved disease after C. muridarum infection in WSX-1-/- mice. Overall, we conclude that IL-27/IL-27R mediates protective immunity during chlamydial respiratory infection in mice by suppressing excessive Th17 responses and reducing neutrophil inflammation.


Subject(s)
Inflammation/immunology , Interleukins/immunology , Neutrophils/immunology , Receptors, Interleukin/immunology , Animals , Chlamydia muridarum/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin/deficiency , Th17 Cells/immunology
12.
J Immunol ; 206(7): 1586-1596, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33608454

ABSTRACT

The IL-21/IL-21R interaction plays an important role in a variety of immune diseases; however, the roles and mechanisms in intracellular bacterial infection are not fully understood. In this study, we explored the effect of IL-21/IL-21R on chlamydial respiratory tract infection using a chlamydial respiratory infection model. The results showed that the mRNA expression of IL-21 and IL-21R was increased in Chlamydia muridarum-infected mice, which suggested that IL-21 and IL-21R were involved in host defense against C. muridarum lung infection. IL-21R-/- mice exhibited less body weight loss, a lower bacterial burden, and milder pathological changes in the lungs than wild-type (WT) mice during C. muridarum lung infection. The absolute number and activity of CD4+ T cells and the strength of Th1/Th17 responses in IL-21R-/- mice were significantly higher than those in WT mice after C. muridarum lung infection, but the Th2 response was weaker. Consistently, IL-21R-/- mice showed higher mRNA expression of Th1 transcription factors (T-bet/STAT4), IL-12p40, a Th17 transcription factor (STAT3), and IL-23. The mRNA expression of Th2 transcription factors (GATA3/STAT6), IL-4, IL-10, and TGF-ß in IL-21R-/- mice was significantly lower than that in WT mice. Furthermore, the administration of recombinant mouse IL-21 aggravated chlamydial lung infection in C57BL/6 mice and reduced Th1 and Th17 responses following C. muridarum lung infection. These findings demonstrate that IL-21/IL-21R may aggravate chlamydial lung infection by inhibiting Th1 and Th17 responses.


Subject(s)
Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Interleukins/metabolism , Lung/immunology , Receptors, Interleukin-21/metabolism , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Animals , Female , Inflammation , Intracellular Space , Mice , Receptors, Interleukin-21/genetics , STAT3 Transcription Factor/genetics , Signal Transduction , T-Box Domain Proteins/genetics
13.
ACS Appl Mater Interfaces ; 12(51): 56692-56700, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33290034

ABSTRACT

To date, many methods have been developed for inducing tumor cell death, such as using chemical drugs and radiation. However, all of them have a common problem, a lack of mechanisms for precisely regulating the death of tumor cells. It often leads to nonspecific death and systemic side effects. Therefore, the efficacy and further application of these traditional methods are limited. In this paper, a logic AND-gated sonogene nanosystem was designed for precisely regulating the apoptosis of tumor cells. The running of this system required two essential parts, MscL I92L channel protein and ultrasound. Ultrasound could open the MscL I92L protein channel which when expressed on cells triggers the influx and outflux of small molecules through the channel. When the channel is kept open for a long time, Ca2+ influx becomes excessive which in turn activates the Ca2+ apoptosis pathway of cells. The expression of MscL I92L protein and the applying of ultrasound constituted the logic AND gate which could implement the precise regulation to apoptosis. This strategy would help reduce nonspecific triggers and side effects. In this system, cationic nanoliposomes were prepared as the carrier for effectively delivering MscL I92L plasmids to tumor cells in vivo. We investigated the apoptosis-promoting effect of this system in different tumor cell lines (HeLa, B16, and 4T1). The results demonstrated that the apoptosis rate was highest in the B16 cell line (the early apoptosis rate was 11.9% and the late apoptosis rate was 59.1%) when the cells were subjected to consistent ultrasound (6 MHz, 15 W) for 30 min. This logic AND-gated sonogene nanosystem is expected to provide a new strategy and development direction for tumor therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/physiology , DNA/therapeutic use , Ion Channels/chemistry , Neoplasms/therapy , Ultrasonic Waves , Animals , Cell Line, Tumor , DNA/genetics , Drug Carriers/chemistry , Female , Gene Transfer Techniques , Humans , Ion Channels/genetics , Liposomes/chemistry , Logic , Mice , Plasmids/genetics , Plasmids/therapeutic use
14.
Pathog Dis ; 77(3)2019 04 01.
Article in English | MEDLINE | ID: mdl-31107947

ABSTRACT

Apoptosis is essential for the homeostatic control of the lymphocytes number during the development of an immune response to an invasive microorganism. CD4+ T cells play a major role in homeostasis of the immune system and are sufficient to confer protection against Chlamydia muridarum (Cm) infection in mice. The present study demonstrated that phosphatidylinositol 3-kinase (PI3K) p110δ mRNA and phosphorylation of protein kinase B (p-AKT) level were significantly increased in lung cells and spleen cells at day 3 and day 7 post-infection, p-AKT level was inhibited when adding PI3K inhibitor LY294002. Moreover, Cm infection induced high levels of IL-2/IL-2Rα in CD4+ T cells, which may relate to PI3K/AKT signal pathway activation. We observed that Cm infection significantly induced apoptosis of CD4+ T cells. The related apoptosis proteins Bcl-2 and Mcl-1 uneven expression levels were induced in CD4+ T cells by Cm infection. These findings provided in vivo and in vitro evidence that Cm infection induces CD4+ T cells apoptosis possibly via PI3K/AKT signal pathway.


Subject(s)
Apoptosis , CD4-Positive T-Lymphocytes/pathology , Chlamydia Infections/pathology , Chlamydia muridarum/pathogenicity , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Animals , Disease Models, Animal , Female , Immune Evasion , Mice, Inbred C57BL
15.
Microb Pathog ; 129: 106-111, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30703475

ABSTRACT

Chlamydia is an obligate intracellular bacteria, which can infect cervix, urethra, conjunctiva, joints, lungs and so on. Neutrophils are important in host protection against microbial invasion during the early phase of infection. Here, to investigate the mechanism of IL-17A in recruiting neutrophils during Chlamydia muridarum (Cm) lung infection, we introduced IL-17A antibodies and IL-17-/- mice to confirm the effect of IL-17A on influencing neutrophil attractants expressions. From the analysis of the data, we found that showed that Cm infection could upregulate the expression of neutrophil-related chemokines such as KC, MIP-2 and IL-6, as well as adhesion molecules including ICAM-1 and VCAM-1. With blocking endogenous IL-17A, the upregulated MIP-2 and IL-6 were decreased, which induced less neutrophil recruitment in lung. Comparing to WT mice, IL-17-/- mice showed decreased infiltration of neutrophils in lung during the early phase of Cm infection, which were accordant with decreased chemokines, such as KC, MIP-2 and IL-6 expression. Whereas, the expression of adhesion molecules including ICAM and VCAM-1 in lungs were significantly increased in IL-17-/- mice comparing to WT mice during Cm lung infection. The results demonstrated that IL-17A influenced neutrophil infiltration by affecting expression of chemokines and adhesion molecules during the early phase of chlamydial lung infection.


Subject(s)
Chemokines/metabolism , Chlamydia Infections/pathology , Chlamydia muridarum/pathogenicity , Interleukin-17/metabolism , Neutrophil Infiltration/drug effects , Pneumonia, Bacterial/pathology , Animals , Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Disease Models, Animal , Interleukin-17/antagonists & inhibitors , Interleukin-17/deficiency , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Pneumonia, Bacterial/immunology
16.
Pathog Dis ; 76(6)2018 08 01.
Article in English | MEDLINE | ID: mdl-29893841

ABSTRACT

PI3Ks display integrant significance in T-cell development and differentiation, which is related to host defense against infections. Here, we investigated the role of p110δ isoform of PI3Ks in host defense against chlamydial lung infection in a mouse model. Our data showed that lung infection with Chlamydia muridarum (Cm) activated PI3K/AKT signaling pathway. Compared to WT mice, p110δD910A mice, mice with an inactivating knockin mutation in the p110δ Isoform of PI3Ks, showed more sever disease phenotype and slower recovery, which was associated with reduced Chlamydia-specific Th1 and Th17 immune responses following infection. Further adoptive transfer experiment showed that mice which received CD4+ T cells from infected p110δD910A mice exhibited greater body weight loss and higher bacterial loads in the lung than those which received CD4+ T cells from WT mice following challenge infection. These results provide in vivo evidence that p110δ isoform of PI3Ks plays an important role in host defense against chlamydial infection by promoting CD4+ T-cell immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Chlamydia Infections/immunology , Phosphatidylinositol 3-Kinases/metabolism , Pneumonia, Bacterial/immunology , Protein Isoforms/metabolism , Animals , Body Weight , Chlamydia Infections/pathology , Chlamydia muridarum/immunology , Class I Phosphatidylinositol 3-Kinases , Disease Models, Animal , Mice , Mutant Proteins/genetics , Mutant Proteins/metabolism , Phosphatidylinositol 3-Kinases/genetics , Pneumonia, Bacterial/pathology
17.
Mediators Inflamm ; 2018: 6265746, 2018.
Article in English | MEDLINE | ID: mdl-29670466

ABSTRACT

Our previous studies showed that γδ T cells provided immune protection against Chlamydial muridarum (Cm), an obligate intracellular strain of chlamydia trachomatis, lung infection by producing abundant IL-17. In this study, we investigated the proliferation and activation of lung γδ T cell subsets, specifically the IL-17 and IFNγ production by them following Cm lung infection. Our results found that five γδ T cell subsets, Vγ1+ T, Vγ2+ T, Vγ4+ T, Vγ5+ T, and Vγ6+ T, expressed in lungs of naïve mice, while Cm lung infection mainly induced the proliferation and activation of Vγ4+ T cells at day 3 p.i., following Vγ1+ T cells at day 7 p.i. Cytokine detection showed that Cm lung infection induced IFNγ secretion firstly by Vγ4+ T cells at very early stage (day 3) and changed to Vγ1+ T cells at midstage (day 7). Furthermore, Vγ4+ T cell is the main γδ T cell subset that secretes IL-17 at the very early stage of Cm lung infection and Vγ1+ T cell did not secrete IL-17 during the infection. These findings provide in vivo evidence that Vγ4+T cells are the major IL-17 and IFNγ-producing γδ T cell subsets at the early period of Cm lung infection.


Subject(s)
Cytokines/metabolism , Interferon-gamma/metabolism , Interleukin-17/metabolism , T-Lymphocytes/metabolism , Animals , Lung/metabolism , Lung/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...