Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Pathol ; 33(1): e13109, 2023 01.
Article in English | MEDLINE | ID: mdl-35794855

ABSTRACT

Epigenetic modification contributes to the pathogenesis of cerebral ischemia. Piwil2 belongs to the PIWI proteins subfamily and has a key role in the regulation of gene transcription through epigenetics. However, the roles of Piwil2 in cerebral ischemia have not been investigated. In this study, we aim to elucidate the roles and the underlying molecular mechanisms of Piwil2 in ischemic tolerance induced by hypoxic postconditioning (HPC) against transient global cerebral ischemia (tGCI). We found that the expression of Piwil2 in CA1 was downregulated by HPC after tGCI. Silencing Piwil2 with antisense oligodeoxynucleotide (AS-ODN) in CA1 after tGCI decreased the expression of apoptosis-related proteins and exerted neuroprotective effects. Opposite results were observed after overexpression of Piwil2 induced by administration of Piwil2-carried lentivirus. Furthermore, we revealed differentially expressed Piwil2-interacting piRNAs in CA1 between HPC and tGCI groups by RNA binding protein immunoprecipitation (RIP) assay. Moreover, downregulating Piwil2 induced by HPC or AS-ODN after tGCI caused a marked reduction of DNA methyltransferase 3A (DNMT3A), which in turn abolished the tGCI-induced increase in the DNA methylation of cyclic AMP response element-binding 2 (CREB2), thus increasing mRNA and protein of CREB2. Finally, downregulating Piwil2 restored dendritic complexity and length, prevented the loss of dentritic spines, thereby improving cognitive function after tGCI. These data firstly reveal that Piwil2 plays an important part in HPC-mediated neuroprotection against cerebral ischemia through epigenetic regulation of CREB2.


Subject(s)
Brain Ischemia , Ischemic Attack, Transient , Animals , Rats , Brain Ischemia/pathology , CA1 Region, Hippocampal/pathology , Cerebral Infarction/pathology , Epigenesis, Genetic , Ischemic Attack, Transient/metabolism , Ischemic Attack, Transient/pathology , Ischemic Attack, Transient/prevention & control , Methylation , Rats, Wistar , RNA-Binding Proteins/metabolism
2.
FASEB J ; 33(8): 9291-9307, 2019 08.
Article in English | MEDLINE | ID: mdl-31120770

ABSTRACT

The Wingless/Int (Wnt)/ß-catenin pathway plays an essential role in cell survival. Although postconditioning with 8% oxygen can alleviate transient global cerebral ischemia (tGCI)-induced neuronal damage in hippocampal CA1 subregion in adult rats as demonstrated by our previous studies, little is understood about the role of Wnt/ß-catenin pathway in hypoxic postconditioning (HPC)-induced neuroprotection. This study tried to investigate the involvement of Wnt/ß-catenin pathway in HPC-induced neuroprotection against tGCI and explore the underlying molecular mechanism thereof. We observed that HPC elevated nuclear ß-catenin level as well as increased Wnt3a and decreased Dickkopf-1 (Dkk1) expression in CA1 after tGCI. Accordingly, HPC enhanced the expression of survivin and reduced the ratio of B-cell lymphoma/lewkmia-2 (Bcl-2)-associated X protein (Bax) to Bcl-2 following reperfusion. Moreover, our study has shown that these effects of HPC were abolished by lentivirus-mediated overexpression of Dkk1, and that the overexpression of Dkk1 completely reversed HPC-induced neuroprotection. Furthermore, HPC suppressed the activity of glycogen synthase kinase-3ß (GSK-3ß) in CA1 after tGCI, and the inhibition of GSK-3ß activity with SB216763 increased the nuclear accumulation of ß-catenin, up-regulated the expression of survivin, and reduced the ratio of Bax to Bcl-2, thus preventing the delayed neuronal death after tGCI. Finally, the administration of LY294002, an inhibitor of PI3K, increased GSK-3ß activity and blocked nuclear ß-catenin accumulation, thereby decreasing survivin expression and elevating the Bax-to-Bcl-2 ratio after HPC. These results suggest that activation of the Wnt/ß-catenin pathway through Dkk1 inhibition and PI3K/protein kinase B pathway-mediated GSK-3ß inactivation contributes to the neuroprotection of HPC against tGCI.-Zhan, L., Liu, D., Wen, H., Hu, J., Pang, T., Sun, W., Xu, E. Hypoxic postconditioning activates the Wnt/ß-catenin pathway and protects against transient global cerebral ischemia through Dkk1 inhibition and GSK-3ß inactivation.


Subject(s)
Brain Ischemia/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Blotting, Western , Brain Ischemia/genetics , CA1 Region, Hippocampal/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Immunohistochemistry , Intercellular Signaling Peptides and Proteins/genetics , Male , Proto-Oncogene Proteins c-bcl-2/genetics , Rats , Rats, Wistar , Wnt Proteins/genetics , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...