Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 12(32): 16851-16863, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32761008

ABSTRACT

RNA interference (RNAi)-based immunotherapy combined with chemotherapy has emerged as a promising therapeutic strategy for cancer treatment. The transport of siRNA and small molecular agents from the tumor vasculature to a separate therapeutic target has been impeded by multiple physiological barriers, which has restricted the development of RNAi-based chemoimmunotherapy. A nanotechnology-based co-delivery system was superior in improving the co-localization of gene and drug in the same tumor cell, while a co-delivery system for chemoimmunotherapy was expected to realize xenotype cell-targeting, which means delivering immunotherapy agents and chemotherapy drugs to immune cells and tumor cells, respectively. A multilayer structure co-delivery system was outstanding in crossing these barriers and targeting different cells in tumor tissue. Herein, a "layer peeling" co-delivery system (CDMPR) was developed with co-loaded IKKß-siRNA and doxorubicin (DOX), in which IKKß-siRNA was used for RNAi-based tumor associated macrophages (TAMs) polarization for immunotherapy and DOX was used for chemotherapy. A transwell assay in vitro and an immunofluorescence assay in Hepa1-6 tumor-bearing mice indicated that CDMPR exhibited a pH-sensitive disassembly ability in tumor tissue, IKKß-siRNA was precisely delivered to M2-type TAMs and DOX was internalized into tumor cells. An M2-type TAMs polarization ability study of CDMPR demonstrated that M2-type TAMs could be polarized to M1-type TAMs by CDMPR in vitro and in vivo. In Hepa1-6 tumor-bearing mice, CDMPR exhibited improved antitumor efficiency with M2-type re-polarization ability by the precise delivery of IKKß-siRNA and DOX to M2-type TAMs and tumor cells, respectively. Consequently, the combination of RNAi-based TAMs polarization and chemotherapy by the "layer peeling" co-delivery system would achieve an enhanced chemoimmunotherapy effect, which provides a novel strategy to improve cancer therapeutic effects.


Subject(s)
Immunotherapy , Tumor-Associated Macrophages , Animals , Doxorubicin/pharmacology , Mice , RNA Interference , RNA, Small Interfering
2.
Int J Nanomedicine ; 15: 4739-4752, 2020.
Article in English | MEDLINE | ID: mdl-32753862

ABSTRACT

PURPOSE: Combined chemotherapeutic drug and protein drug has been a widely employed strategy for tumor treatment. To realize both tumor accumulation and deep tumor penetration for drugs with different pharmacokinetics, we propose a structure-transformable, thermo-pH dual responsive co-delivery system to co-load granzyme B/docetaxel (GrB/DTX). METHODS: Thermo-sensitive hydrogels based on diblock copolymers (mPEG-b-PELG) were synthesized through ring opening polymerization. GrB/DTX mini micelles (GDM) was developed by co-loading these two drugs in pH-sensitive mini micelles, and the GDM-incorporated thermo-sensitive hydrogel (GDMH) was constructed. The thermo-induced gelation behavior of diblock copolymers and the physiochemical properties of GDMH were characterized. GDMH degradation and deep tumor penetration of released mini micelles were confirmed. The pH-sensitive disassembly and lysosomal escape abilities of released mini micelles were evaluated. In vitro cytotoxicity was studied using MTT assays and the in vivo antitumor efficacy study was evaluated in B16-bearing C57BL/6 mice. RESULTS: GDMH was gelatinized at body temperature and can be degraded by proteinase to release mini micelles. The mini micelles incorporated in GDMH can achieve deep tumor penetration and escape from lysosomes to release GrB and DTX. MTT results showed that maximum synergistic antitumor efficacy of GrB and DTX was observed at mass ratio of 1:100. Our in vivo antitumor efficacy study showed that GDMH inhibited tumor growth in the subcutaneous tumor model and in the post-surgical recurrence model. CONCLUSION: The smart-designed transformable GDMH can facilitate tumor accumulation, deep tumor penetration, and rapid drug release to achieve synergistic chemo-protein therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Hydrogels/chemistry , Neoplasms/drug therapy , Temperature , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Docetaxel/therapeutic use , Drug Delivery Systems , Drug Liberation , Drug Synergism , Female , Granzymes/metabolism , Humans , Hydrogen-Ion Concentration , Injections , Mice, Inbred C57BL , Micelles , Neoplasms/pathology , Polyethylene Glycols/chemistry
3.
ACS Appl Mater Interfaces ; 12(34): 38499-38511, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32805954

ABSTRACT

The tumor penetration of nanomedicines constitutes a great challenge in the treatment of solid tumors, leading to the highly compromised therapeutic efficacy of nanomedicines. Here, we developed small morph nanoparticles (PDMA) by modifying polyamidoamine (PAMAM) dendrimers with dimethylmaleic anhydride (DMA). PDMA achieved deep tumor penetration via an active, energy-dependent, caveolae-mediated transcytosis, which circumvented the obstacles in the process of deep penetration. PDMA remained negatively charged under normal physiological conditions and underwent rapid charge reversal from negative to positive under acidic conditions in the tumor microenvironment (pH < 6.5), which enhanced their uptake by tumor cells and their deep penetration into tumor tissues in vitro and in vivo. The deep tumor penetration of PDMA was achieved mainly by caveolae-mediated transcytosis, which could be attributed to the small sizes (5-10 nm) and positive charge of the morphed PDMA. In vivo studies demonstrated that PDMA exhibited increased tumor accumulation and doxorubicin-loaded PDMA (PDMA/DOX) showed better antitumor efficacy. Overall, the small morph PDMA for enhanced deep tumor penetration via caveolae-mediated transcytosis could provide new inspiration for the design of anticancer drug delivery systems.


Subject(s)
Caveolae/metabolism , Nanoparticles/chemistry , Polyamines/chemistry , Transcytosis/physiology , Animals , Cell Line, Tumor , Dendrimers/chemistry , Doxorubicin/chemistry , Doxorubicin/metabolism , Doxorubicin/therapeutic use , Drug Carriers/chemistry , Fluorescent Dyes/chemistry , Humans , Hydrogen-Ion Concentration , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Nanoparticles/metabolism , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Particle Size , Tissue Distribution , Transplantation, Homologous
4.
Int J Nanomedicine ; 14: 2543-2555, 2019.
Article in English | MEDLINE | ID: mdl-31114190

ABSTRACT

Purpose: To further enhance the antitumor efficacy through targeted delivery, DTX loaded lipid-based-nanosuspensions (DTX-LNS) were prepared and functionalized by PEGylation or NGR modification to develop DSPE-PEG2000 modified DTX-LNS (P-DTX-LNS) or DSPE-PEG2000-NGR modified DTX-LNS (N-DTX-LNS), respectively. Methods: Based on our previous work, functionalized DTX-LNS including P-DTX-LNS and N-DTX-LNS were prepared using thin-film hydration, and then characterized. Release behavior, stability in vitro, cytotoxicity and cellular uptake of functionalized LNS were observed. To demonstrate tumor targeting efficiency of functionalized DTX-LNS, in vivo real-time and ex vivo imaging study were conducted. Furthermore, therapeutic efficacy in vivo was evaluated in an H22-bearing mice model. Results: Functionalized DTX-LNS 100-110 nm in diameter were successfully prepared and exhibited good stability under various conditions. In vitro release studies demonstrated that DTX was released from functionalized DTX-LNS steadily and reached approximately 95% at 48 hrs. Functionalized DTX-LNS showed dose-dependent cytotoxicity and time-dependent internalization in human hepatocellular liver carcinoma cells (HepG2) cells. In vivo real-time and ex vivo imaging results indicated that tumor targeting efficiencies of P-DiR-LNS and N-DiR-LNS were 29.9% and 34.3%, respectively. Moreover, evaluations of in vivo antitumor efficacy indicated that functionalized DTX-LNS effectively inhibited tumor growth with low toxicity. Conclusion: The functionalized LNS exhibited suitable particle size, nearly spherical structure, enough drug loading and great potentials for large-scale production. The results in vitro and in vivo demonstrated that functionalized LNS could realize tumor targeting and antitumor efficacy. Consequently, functionalized DTX-LNS could be expected to be used for tumor targeting therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Docetaxel/pharmacology , Lipids/chemistry , Nanoparticles/chemistry , Suspensions/chemistry , Animals , Cell Death/drug effects , Drug Carriers/chemistry , Drug Liberation , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Male , Mice , Particle Size , Phosphatidylethanolamines/chemical synthesis , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry
5.
ACS Appl Mater Interfaces ; 10(44): 37797-37811, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30360105

ABSTRACT

Enhancing cytosol delivery of exogenous antigens in antigen presenting cells can improve cross-presentation and CD8+ T cell-mediated immune response. The antigen cytosol delivery speed, which has great importance on the rate of MHC class I molecules (MHC I) antigen presentation pathway and cytotoxic T lymphocytes (CTLs) induction, has not been well studied. We hypothesized that micelle-tailored vaccine with multiple cascaded lysosomal responsive capabilities could accelerate lysosomal escape and enhance cancer immunotherapy. To test our hypothesis, we created a novel micellar cancer vaccine (ovalbumin-loaded pH/redox dual-sensitive micellar vaccine, OLM-D) by cleavable conjugation of an antigen with house-made amphiphilic poly(l-histidine)-poly(ethylene glycol) (PLH-PEG) in current study. OLM-D was supposed to achieve cascade cytosol delivery of ovalbumin through three steps in terms of (i) initial redox triggered ovalbumin release, (ii) promoted proton inflow and micelle disassembly, and (iii) speeded proton sponge effect and lysosome bulging/broke. Redox-sensitive antigen release and consequently accelerative OLM-D disassembly were confirmed by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), transmission electronic microscopy (TEM), particle sizes, zeta potentials, and in vitro Ova release evaluation. The speeded cytosol delivery of ovalbumin was visualized under a confocal laser scanning microscope (CLSM). The ability of OLM-D to increase the MHC I molecule combination rate and antigen cross-presentation efficiency was identified by antigen presentation assay and maturation assay in bone marrow-derived dendritic cells (BMDCs). In vivo, the capability of OLM-D to accumulate in draining lymph nodes (LNs) after injection was visualized by real-time near infrared fluorescence imaging (NIRF) and the distribution order in different LNs was first observed (a, d, c, b). Enhanced cancer immunity of OLM-D was confirmed by increased CD3+CD8+ T cell quantity, CD3+CD8+25D11.6+ T cells quantity, and IFN-γ, IL-2 secretion post subcutaneous or intraperitoneal injection ( p < 0.05). Taken together, our results indicated that OLM-D provided a promising cascade cytosol delivery strategy, which held great potential to guide further design of nano-particulate cancer vaccines for efficient cancer immunotherapy.


Subject(s)
Cancer Vaccines/administration & dosage , Drug Delivery Systems , Immunotherapy , Neoplasms/therapy , Animals , Antigen-Presenting Cells/drug effects , Cancer Vaccines/immunology , Cytosol/drug effects , Dendritic Cells/drug effects , Dendritic Cells/immunology , Electrophoresis, Polyacrylamide Gel , Histidine/administration & dosage , Histidine/chemistry , Histocompatibility Antigens Class I/immunology , Humans , Lysosomes/immunology , Mice , Micelles , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Neoplasms/immunology , Ovalbumin/administration & dosage , Ovalbumin/chemistry , Particle Size , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology
6.
J Mater Chem B ; 6(43): 7004-7014, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-32254583

ABSTRACT

Glutathione (GSH)-mediated drug resistance can strongly weaken the therapeutic efficiency of platinum(ii). Therapeutic platforms developed based on small-molecule-based nanodrugs (SMNDs) have gained great attention due to their unique properties. Herein, a novel SMND of carboplatin-lauric acid nanoparticles (CBP-LA NPs) was developed for the first time to reduce GSH-mediated platinum resistance and improve the antitumor efficiency of platinum(ii). A CBP-LA conjugate was synthesized and CBP-LA NPs were prepared. Intracellular glutathione determination and intracellular Pt-DNA adduct assay were performed. Then the cellular cytotoxicity, cellular uptake, targeted biodistribution and in vivo antitumor efficacy of CBP-LA NPs were investigated. The CBP-LA conjugate could self-assemble into nanoparticles with small, uniform size and high drug loading (48%). The CBP-LA NPs exhibited a low critical aggregation concentration of 1.4 µg mL-1 and outstanding plasma stability in vitro. Under reduced conditions, the CBP-LA NPs showed redox-responsive behavior. The intracellular glutathione determination and the Pt-DNA adduct assay revealed that CBP-LA NPs could reduce the intracellular GSH levels and improve the efficiency of platinum chelating with DNA, which would overcome GSH-mediated platinum(ii) resistance. The cellular uptake study revealed that CBP-LA NPs were internalized by tumor cells, which was very beneficial for improving the therapeutic efficiency. Furthermore, an in vivo study demonstrated that CBP-LA NPs significantly enhanced drug accumulation at tumor sites and improved antitumor efficiency (p < 0.05) compared to the CBP solution group. This study suggests that CBP-LA NPs are a potential formulation to enhance prostate cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...