Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
J Pharm Biomed Anal ; 244: 116129, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38579408

ABSTRACT

Oligosaccharides constitute fundamental components in numerous traditional Chinese medicines (TCMs). Conventional chromatographic methods for natural product analysis are not suitable for oligosaccharides due to their large polarity and structural similarity. Herein, an ultra-high performance liquid chromatography with charged aerosol detector (UHPLC-CAD) method was developed for the profiling of oligosaccharides using 9 neutral (DP3-DP11) reference oligosaccharides. Various factors, including columns, mobile phase, elution conditions, flow rate, and column temperature were systematically examined. Optimal separation was achieved using an Amide column with gradient elution within 18 min, at 0.5 mL/min flow rate and 30°C column temperature. Moreover, an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) method was also optimized to provide structural information. The developed method was applied to detect oligosaccharides in several TCMs, including Morindae Officinalis Radix (MOR), Ziziphi Spinosae Semen (ZSS), Menthae Haplocalycis Herba (MHH) and Chrysanthemi Indici Flos (CIF), revealing 9 and 16 oligosaccharides being uncovered from MHH and CIF respectively for the first time. This study presents a versatile UHPLC-CAD and UHPLC-Q-TOF/MS method with the potential for advancing oligosaccharides discovery and contributing to the quality analysis of TCMs.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Oligosaccharides , Chromatography, High Pressure Liquid/methods , Oligosaccharides/analysis , Oligosaccharides/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mass Spectrometry/methods
2.
Integr Zool ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288562

ABSTRACT

Limited aerobic scope (AS) during digestion might be the main constraint on the performance of bodily functions in water-breathing animals. Thus, investigating the postprandial changes in various physiological functions and determining the existence of a shared common pattern because of possible dependence on residual AS during digestion in freshwater fish species are very important in conservation physiology. All species from slow-flow habitats showed impaired swimming speed while digesting, whereas all species from fast-flow habitats showed strong swimming performance, which was unchanged while digesting. Only two species from slow-flow habitats showed impaired heat tolerance during digestion, suggesting that whether oxygen limitation is involved in the heat tolerance process is species-specific. Three species from slow- or intermediate-flow habitats showed impaired hypoxia tolerance during digestion because feeding metabolism cannot cease completely under hypoxia. Overall, there was no common pattern in postprandial changes in different physiological functions because: (1) the digestion process was suppressed under oxygen-limiting conditions, (2) the residual AS decreased during digestion, and (3) performance was related to residual AS, while digestion was context-dependent and species-specific. However, digestion generally showed a stronger effect on bodily functions in species from slow-flow habitats, whereas it showed no impairment in fishes from fast-flow habitats. Nevertheless, the postprandial change in physiological functions varies with habitat, possibly due to divergent selective pressure on such functions. More importantly, the present study suggests that a precise prediction of how freshwater fish populations will respond to global climate change needs to incorporate data from postprandial fishes.

3.
Analyst ; 149(1): 161-168, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37991898

ABSTRACT

As a new type of pollutant in the marine environment and terrestrial ecosystems, microplastics have attracted widespread attention. Assessing the ecological risk of microplastics relies on accurately detecting small-sized particles in the environment. Microplastics exhibit unique "fingerprint" characteristics in Raman spectroscopy, making them suitable for rapid identification. In this study, we achieved visualization of microplastics through pseudo-color images generated by Raman spectroscopy imaging. Pseudo-color imaging maps were generated by selecting characteristic peaks and the classical least-squares fitting method was used to visually represent the distribution of different microplastics. The study explored the potential of Raman spectroscopy and its mapping mode in distinguishing various types of mixed microplastics and demonstrated that this approach can identify microplastics in complex environmental samples. Specifically, a cloud-point extraction followed by membrane filtration method was successfully applied to identifying mixed-component microplastics. In summary, the category, quantity, location, and differentiation of microplastics can be accurately analyzed by Raman spectroscopy, which provides a basis for assessing their ecological risk.

4.
J Nat Prod ; 86(11): 2474-2486, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37862150

ABSTRACT

Subplenones A-J (1-10), 10 new xanthone dimers, have been isolated and characterized from the endophytic fungus Subplenodomus sp. CPCC 401465, which resides within the Chinese medicinal plant Gentiana straminea. The isolation process was guided by antibacterial assays and molecular-networking-based analyses. The chemical structures of these compounds were elucidated through the interpretation of nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HRESIMS) data. Furthermore, the relative configuration of the compounds was determined using NMR and single-crystal X-ray diffraction analyses, and the absolute configuration was established using electronic circular dichroism calculations. All of the isolated compounds exhibited significant inhibitory activity against Gram-positive bacteria. Notably, compounds 1, 5, and 7 displayed remarkable inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 700698, with a minimum inhibitory concentration (MIC) of 0.25 µg/mL, and against vancomycin-resistant Enterococcus faecium (VRE) ATCC 700221, with MIC values ranging from 0.5 to 1.0 µg/mL.


Subject(s)
Ascomycota , Methicillin-Resistant Staphylococcus aureus , Plants, Medicinal , Xanthones , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Xanthones/pharmacology , Xanthones/chemistry , Molecular Structure
5.
Sci Rep ; 13(1): 12369, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37524761

ABSTRACT

The Santos Basin, located in the southeastern waters of Brazil, is a passive continental margin basin with the most abundant deepwater petroleum resources in the world discovered to date. However, few studies have been conducted on the present geothermal fields of the Santos Basin, which severely restricts the oil and gas resource evaluation of the basin. This study first utilizes 35 temperature data from 16 post-salt drilling wells and 370 temperature data from 31 pre-salt drilling wells to calculate the post-salt and pre-salt geothermal gradients and terrestrial heat flows in the Santos Basin. Then, the basin simulation software BasinMod 1D is used to quantitatively evaluate the impacts of salt rock sedimentation on the present geothermal fields and the maturity of pre-salt hydrocarbon source rocks. The results demonstrate that the present post-salt geothermal gradient in the Santos Basin is 2.20-3.97 °C/100 m, with an average value of 2.99 °C /100 m, and the post-salt terrestrial heat flow is 54.00-97.32 mW/m2, with an average value of 73.36 mW/m2, while the present pre-salt geothermal gradient is 2.21-2.95 °C/100 m, with an average value of 2.53 °C/100 m, and the pre-salt terrestrial heat flow is 61.85-82.59 mW/m2, with an average value of 70.69 mW/m2. These values are characteristic of a low-temperature geothermal field in a zone with a stable structure. The sedimentation of the salt rock causes a decrease in the temperature of the pre-salt strata, which inhibits pre-salt hydrocarbon source rock maturity, with an inhibition rate of up to 1.32%. The inhibition degree decreases with increasing salt rock thickness. At the same time, the salt rock thickness is positively correlated with the present surface heat flow. The unique distribution of the salt rock and related salt structures lead to present terrestrial heat flow differences among different structural units in the basin. This study is of great significance for evaluating and exploring the pre-salt oil and gas resources in the Santos Basin.

7.
Front Nutr ; 10: 1060398, 2023.
Article in English | MEDLINE | ID: mdl-37125050

ABSTRACT

Background: This study applied machine learning (ML) algorithms to construct a model for predicting EN initiation for patients in the intensive care unit (ICU) and identifying populations in need of EN at an early stage. Methods: This study collected patient information from the Medical Information Mart for Intensive Care IV database. All patients enrolled were split randomly into a training set and a validation set. Six ML models were established to evaluate the initiation of EN, and the best model was determined according to the area under curve (AUC) and accuracy. The best model was interpreted using the Local Interpretable Model-Agnostic Explanations (LIME) algorithm and SHapley Additive exPlanation (SHAP) values. Results: A total of 53,150 patients participated in the study. They were divided into a training set (42,520, 80%) and a validation set (10,630, 20%). In the validation set, XGBoost had the optimal prediction performance with an AUC of 0.895. The SHAP values revealed that sepsis, sequential organ failure assessment score, and acute kidney injury were the three most important factors affecting EN initiation. The individualized forecasts were displayed using the LIME algorithm. Conclusion: The XGBoost model was established and validated for early prediction of EN initiation in ICU patients.

8.
Front Chem ; 11: 1146153, 2023.
Article in English | MEDLINE | ID: mdl-36909715

ABSTRACT

The rhizoma of Polygonatum odoratum (PO) is used to treat yin injuries of the lung and stomach in traditional Chinese medicine. The chemical constituents of this herb are steroidal saponins, homoisoflavanones, and alkaloids. Xiangyuzhu (XPO) and Guanyuzhu (GPO) are available in the market as two specifications of the commodity. Nonetheless, systematic research on the identification and comparison of chemical constituents of these two commercial specifications is yet lacking. Herein, an integrated method combing ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) with ultra-high-performance liquid chromatography-charged aerosol detection (UHPLC-CAD) was employed for the comprehensively qualitative and quantitative analyses of PO. A total of 62 compounds were identified by UHPLC-Q-TOF/MS, among which 13 potential chemical markers were screened out to distinguish two commercial specifications. Subsequently, the absolute determination method for polygodoraside G, polygonatumoside F, and timosaponin H1 was established and validated by UHPLC-CAD. The contents of the three compounds were 13.33-236.24 µg/g, 50.55-545.04 µg/g, and 13.34-407.83 µg/g, respectively. Furthermore, the ratio of timosaponin H1/polygodoraside G could be applied to differentiate the two specifications. Samples with a ratio <2 are considered XPO and >5 are considered GPO. Therefore, the above results provide a valuable means for the quality control of PO.

9.
Aquat Toxicol ; 257: 106433, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36841070

ABSTRACT

Cadmium (Cd) is a widely distributed aquatic toxic heavy metal with the potential to disrupt fish metabolism; however, more research is needed to clarify the underlying mechanisms. In the present study, rare minnows (Gobiocypris rarus) were used to detect the effects of cadmium on freshwater fish lipid metabolism and its underlying mechanism by histopathological observation, measurement of serum and liver biochemical indexes, and analysis of gene expression in terms of lipid oxidation, synthesis and transport. Here, severe damage, such as cytoplasmic lipid droplet (LD) accumulation, ectopic deposition of LDs, and the appearance of nuclear LDs (nLDs), was detected after exposure to 2.0 mg/L or higher concentrations (2.5 and 2.8 mg/L CdCl2) for 96 h. Other damage included abnormal increases in rough endoplasmic reticulum (RER) lamellae in a fingerprint or concentric circle pattern and necrosis of hepatocytes, and which was observed in the livers of fish exposed to 2.0 mg/L CdCl2.. Both hepatic and serum lipids, such as triglycerides and total cholesterol, were significantly increased after exposure to 2.0 mg/L CdCl2, as was serum lipase (LPS). Hepatic lipase and lipoprotein lipase remained unchanged, in accordance with the unchanged hepatic mRNA transcripts of PPARɑ. Furthermore, the mRNA transcripts of both SCD and SQLE were significantly decreased. Moreover, hepatic and serum low-density and high-density lipoprotein cholesterol showed significant changes, which were accompanied by a significant increase and decrease in hepatic APOAI and APOB100 mRNA levels, respectively. All the results indicate the presence of severe damage to hepatic lipid metabolism and that disrupted lipid transport may play a key role in the accumulation of hepatic LDs. In addition, the hepatic nLDs of nonmammalian vertebrates and their location across the nuclear envelope are intriguing, suggesting that large-size nLDs are a common marker for severe liver damage.


Subject(s)
Cyprinidae , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Cadmium/metabolism , Lipid Metabolism , Lipid Droplets , Water Pollutants, Chemical/toxicity , Hepatocytes/metabolism , Cyprinidae/metabolism , Liver , Triglycerides/metabolism , Lipase/metabolism , Lipase/pharmacology , RNA, Messenger/metabolism , Cholesterol/metabolism
10.
Front Plant Sci ; 14: 1114988, 2023.
Article in English | MEDLINE | ID: mdl-36818843

ABSTRACT

Tea is a vital beverage crop all over the world, including in China. Low temperatures restrict its growth, development, and terrestrial distribution, and cold event variability worsens cold damage. However, the physiological and molecular mechanisms of Camellia sinensis under shade in winter remain unclear. In our study, tea leaves were utilized for physiological attributes and transcriptome analysis in November and December in three shading groups and no-shade control plants. When compared to the no-shade control plants, the shading group protected tea leaves from cold damage, increased photochemical efficiency (Fv/Fm) and soil plant analysis development (SPAD), and sustained chlorophyll a, chlorophyll b, chlorophyll, and carotenoid contents by physiological mean. Then, transcriptome analysis revealed 20,807 differentially expressed genes (DEGs) and transcription factors (TFs) in November and December. A comparative study of transcriptome resulted in 3,523 DEGs and many TFs under SD0% vs. SD30%, SD0% vs. SD60%, and SD0% vs. SD75% of shading in November and December. Statistically, 114 DEGs were downregulated and 72 were upregulated under SD0% vs. SD30%. SD0% vs. SD60% resulted in 154 DEGs, with 60 downregulated and 94 upregulated. Similarly, there were 505 DEGs of which 244 were downregulated and 263 were upregulated under SD0% vs. SD75% of shading throughout November. However, 279 DEGs were downregulated and 105 were upregulated under SD0% vs. SD30%. SD0% vs. SD60% resulted in 296 DEGs, with 172 downregulated and 124 upregulated. Finally, 2,173 DEGs were regulated in December, with 1,428 downregulated and 745 upregulated under SD0% vs. SD75%. These indicate that the number of downregulated DEGs in December was higher than the number of upregulated DEGs in November during low temperatures. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of differentially expressed genes were highly regulated in the photosynthesis, plant hormone signal transduction, and mitogen-activated protein kinase (MAPK) signaling pathways. However, qRT-PCR and RNA-seq relative expression of photosynthetic (DEGs) Lhcb2 in both November and December, plant hormone (DEGs) BRI1 and JAZ in November and IAA and ERF1 in December, and key DEGs of MAPK signal transduction FLS2, CHIB, and MPK4 in November and RBOH, MKK4_5, and MEKK1 in December in three shading groups and no-shade control plants responded to tea cold tolerance. The enhanced expression of light-harvesting photosystem I gene Lhca5, light-harvesting photosystem II gene Lhcb2, and mitogen-activated protein kinases MEKK1 and MPK4/6 enhance the cold-tolerance mechanism of C. sinensis. These comprehensive transcriptomic findings are significant for furthering our understanding of the genes and underlying regulatory mechanisms of shade-mediated low-temperature stress tolerance in horticultural crops.

11.
Food Chem ; 407: 135171, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36508866

ABSTRACT

Increasing pesticide contamination in foods of animal origin has made the wide-scope multi-residue analysis of pesticides an international concern. By using 191 pesticides, this study investigates a sensitive and reliable method for multi-residue analysis of pesticides in beef to determine the extent of the application of this method. The QuEChERS method was employed to extract and purify the pesticides as C18 was utilized as the absorbents. Then, the purified pesticides were analysed using gas chromatography - quadrupole orbitrap mass spectrometry (GC-Q-Orbitrap-MS). The validation test results revealed that this method was satisfactorily sensitive since its screening detection limit (SDL) ranged from 0.2 to 100 µg∙kg-1. The recovery tests implemented at three spiking levels, namely 100, 200, and 500 µg∙kg-1, generated the results of 71.95 %-113.97 %, while the intra- and inter-day precisions were 0.27 %-17.94 %, indicating that this method had excellent accuracy and precision.


Subject(s)
Pesticide Residues , Pesticides , Animals , Cattle , Pesticides/analysis , Gas Chromatography-Mass Spectrometry/methods , Pesticide Residues/analysis , Mass Spectrometry/methods , Food
12.
J Mech Behav Biomed Mater ; 138: 105639, 2023 02.
Article in English | MEDLINE | ID: mdl-36577321

ABSTRACT

The mechanical properties of the honeybee's abdominal muscles endow its abdomen with movement flexibility to perform various activities. However, the biomechanical properties of abdominal muscles during stretch activation remain unclear. To clarify this issue, we observed the microstructures of the abdominal muscles to obtain structural information. The similarity and symmetry of abdominal muscle distribution contribute to the ability to drive abdominal movement. Combined with the segmented structure characteristics, an experimental device to measure muscle stretch measurement of honeybees was developed to investigate the mechanical properties of the abdominal muscles. During measurement, the muscles were kept in a solution to maintain a physiological environment. The mechanical properties of abdominal muscles included phases: the ascending phase with proportional increase, stable phase with slight fluctuation, and decay phase with parabolic decline. These findings indicate that the nonlinear and rate-sensitive mechanical properties of the abdominal muscles enable them to rapidly adapt to environmental changes. The stretch force and stiffness coefficient reached 0.660 ± 0.139 mN and 14.364 ± 2.961 N/m, respectively. A simplified biomechanical model of the muscle fiber considering the hierarchical microstructure was introduced, in which the mechanical properties were consistent with the experimental data. Further analysis of the effects of the activation probability and the effective range of binding sites on the mechanical properties demonstrated the critical role in force generation, revealing the mechanism of underlying muscle stretch activation in the honeybee abdomen. The findings can provide a new reference for studying the biomechanical properties of the muscles of other arthropod insects.


Subject(s)
Abdominal Muscles , Muscle Fibers, Skeletal , Bees , Animals , Movement , Biomechanical Phenomena , Muscle Contraction/physiology
13.
J Asian Nat Prod Res ; 25(6): 528-539, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35920176

ABSTRACT

Twenty-two metabolites were isolated from Penicillium sp. CPCC 401423 cultured on rice. The structures of all compounds were elucidated mainly by MS and NMR analysis as well as the necessary CD experimental evidence, of which penicillidione A (1), penicillidione B (2), (E)-4-[(4-acetoxy-3-methyl-2-butenyl)oxy]phenylacetic acid (3), (S)-2-hydroxy-2-{4-[(3-methyl-2-butenyl)oxy]phenyl} (4), (S)-4-(2,3-dihydroxy-3-methyl-butoxy)phenylacetic acid (5), (E)-4-[(3-carboxy-2-butenyl)oxy]benzoic acid (6), (Z)-4-[(4-hydroxy-3-methyl-2-butenyl)oxy]benzoic acid (7), open-cycled N-demethylmelearoride A (12), and penostatin M (16) were identified as new compounds. The cytotoxic activity against human pancreatic carcinoma cell line MIA PaCa-2a was detected. Among them, compounds 13-15 and 22 displayed significant cytotoxicity against MIA-PaCa-2 cells with IC50 values of 8.9, 36.5, 31.8, and 22.3 µM, respectively (positive control gemcitabine IC50 65.0 µM).


Subject(s)
Antineoplastic Agents , Penicillium , Humans , Penicillium/chemistry , Antineoplastic Agents/chemistry , Phenylacetates , Cell Line, Tumor , Benzoic Acid , Molecular Structure
14.
Plants (Basel) ; 13(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38202371

ABSTRACT

Shading is an important technique to protect tea plantations under abiotic stresses. In this study, we analyzed the effect of shading (SD60% shade vs. SD0% no-shade) on the physiological attributes and proteomic analysis of tea leaves in November and December during low temperatures. The results revealed that shading protected the tea plants, including their soil plant analysis development (SPAD), photochemical efficiency (Fv/Fm), and nitrogen content (N), in November and December. The proteomics analysis of tea leaves was determined using tandem mass tags (TMT) technology and a total of 7263 proteins were accumulated. Further, statistical analysis and the fold change of significant proteins (FC < 0.67 and FC > 1.5 p < 0.05) revealed 14 DAPs, 11 increased and 3 decreased, in November (nCK_vs_nSD60), 20 DAPs, 7 increased and 13 decreased, in December (dCK_vs_dSD60), and 12 DAPs, 3 increased and 9 decreased, in both November and December (nCK_vs_nSD60). These differentially accumulated proteins (DAPs) were dehydrins (DHNs), late-embryogenesis abundant (LEA), thaumatin-like proteins (TLPs), glutathione S-transferase (GSTs), gibberellin-regulated proteins (GAs), proline-rich proteins (PRPs), cold and drought proteins (CORA-like), and early light-induced protein 1, which were found in the cytoplasm, nucleus, chloroplast, extra cell, and plasma membrane, and functioned in catalytic, cellular, stimulus-response, and metabolic pathways. In conclusion, the proliferation of key proteins was triggered by translation and posttranslational modifications, which might sustain membrane permeability in tea cellular compartments and could be responsible for tea protection under shading during low temperatures. This study aimed to investigate the impact of the conventional breeding technique (shading) and modern molecular technologies (proteomics) on tea plants, for the development and protection of new tea cultivars.

15.
Chin J Nat Med ; 20(9): 712-720, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36162956

ABSTRACT

Six new prenylated flavonoid glycosides, including four new furan-flavonoid glycosides wushepimedoside A-D (1-4) and two new prenyl flavonoid derivatives wushepimedoside E-F (5-6), and one know analog epimedkoreside B (7) were isolated from biotransformation products of the aerial parts of Epimedium wushanense. Their structures were elucidated according to comprehensive analysis of HR-MS and NMR spectroscopic data, and the absolute configurations were assigned using experimental and calculated electronic circular dichroism (ECD) data. The regulatory activity of compounds 1-7 on the production of testosterone in primary rat Leydig cells were investigated, and 4 and 5 exhibited testosterone production-promoting activities. Molecular docking analysis suggested that bioactive compounds 4 and 5 showed the stable binding with 3ß-HSD and 4 also had good affinity with Cyp17A1, which suggested that these compounds may regulate testosterone production through stimulating the expression of the above two key proteins.


Subject(s)
Epimedium , Animals , Epimedium/chemistry , Flavonoids/chemistry , Furans , Glycosides/chemistry , Hydrolysis , Male , Molecular Docking Simulation , Molecular Structure , Rats , Testosterone , beta-Glucosidase/metabolism
16.
J Agric Food Chem ; 70(39): 12430-12441, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36134616

ABSTRACT

Genome mining revealed that the genomes of basidiomycetes may include a considerable number of biosynthetic gene clusters (BGCs), yet numerous clusters remain unidentified. Herein, we report a combination of genome mining with an OSMAC (one strain, many compounds) approach to characterize the spectrum of melleolides produced by Armillaria tabescens CPCC 401429. Using F1 fermentation medium, the metabolic pathway of the gene cluster mel was successfully upregulated. From the extracts of the wild-type strain, two new melleolides (1 and 2), along with five new orsellinic acid-derived lactams (10-14), were isolated, and their structures were elucidated by LC-HR-ESIMS/MS and 2D-NMR. Several melleolides exhibited moderate anti-carcinoma (A549, NCI-H520, and H1299) effects with IC50 values of 4.0-48.8 µM. RNA-sequencing based transcriptomic profiling broadened our knowledge of the genetic background, regulation, and mechanisms of melleolide biosynthesis. These results may promote downstream metabolic engineering studies of melleolides. Our study demonstrates the approach is effective for discovering new secondary metabolites from Armillaria sp. and will facilitate the mining of the unexploited biosynthetic potential in other basidiomycetes.


Subject(s)
Armillaria , Basidiomycota , Armillaria/chemistry , Basidiomycota/genetics , Lactams , Multigene Family , RNA/metabolism
17.
ACS Omega ; 7(29): 25715-25725, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35910136

ABSTRACT

The Santos Basin in Brazil is a hot area of oil and gas exploration in recent years, and its subsalt lacustrine mudstones are the main source rock of the basin. However, there is a lack of studies on the source rocks of the subsalt Picarras and Itapema formations, which is not conducive to the accurate evaluation of the source rock characteristics. Based on logging data of 51 wells and geochemical data of 16 wells, this paper makes detailed evaluations of the organic matter abundance, type, maturity, and distribution characteristics of source rocks of the subsalt Picarras Formation and Itapema Formation in the Santos Basin. The results show that the characteristics of source rocks of the Itapema and Picarras formations are similar, both of which have a high abundance of organic matter. The types of organic matter are mainly type I and II1, and the maturities are in the low-maturity to the high-maturity stage, which meets the standard of good source rocks. The total organic carbon content of the source rocks of the Picarras Formation ranges from 0.4 to 4.0%, much lower than that of the source rocks of the Itapema Formation, 0.8-5.6%. In addition, the hydrogen index average value of the source rocks of the Itapema Formation is 712.8 mg/g TOC, higher than that of the Picarras Formation, 697.5 mg/g TOC, both revealing a great hydrocarbon potential. The quality of source rocks of the Itapema Formation is better than that of the Picarras Formation. The two sets of source rocks have great hydrocarbon generation potential and are mainly developed in the eastern and western sags of the central depression. Therefore, the surrounding uplift areas will be the target for further oil and gas exploration.

18.
ACS Chem Biol ; 17(6): 1524-1533, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35616995

ABSTRACT

Postgenomic analysis manifested that filamentous fungi contain numerous natural product biosynthetic gene clusters in their genome, yet most clusters remain cryptic or down-regulated. Herein, we report the successful manipulation of strain Aspergillus sp. CPCC 400735 that enables its genetic engineering via targeted overexpression of pathway-specific transcriptional regulator AspE. The down-regulated metabolic pathway encoded by the biosynthetic gene cluster asp was successfully up-activated. Analyses of mutant Ai-OE::aspE extracts led to isolation and characterization of 13 asperphenalenone derivatives, of which 11 of them are new compounds. All of the asperphenalenones exhibited conspicuous anti-influenza A virus effects with IC50 values of 0.45-2.22 µM. Additionally, their identification provided insight into biosynthesis of asperphenalenones and might benefit studies of downstream combinatorial biosynthesis. Our study further demonstrates the effective application of targeted overexpressing pathway-specific activator and novel metabolite discovery in microorganisms. These will accelerate the exploitation of the untapped resources and biosynthetic capability in filamentous fungi.


Subject(s)
Biological Products , Biosynthetic Pathways , Aspergillus/metabolism , Biological Products/metabolism , Biosynthetic Pathways/genetics , Multigene Family
19.
Nat Commun ; 13(1): 2079, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440123

ABSTRACT

The emergence of new highly pathogenic and drug-resistant influenza strains urges the development of novel therapeutics for influenza A virus (IAV). Here, we report the discovery of an anti-IAV microbial metabolite called APL-16-5 that was originally isolated from the plant endophytic fungus Aspergillus sp. CPCC 400735. APL-16-5 binds to both the E3 ligase TRIM25 and IAV polymerase subunit PA, leading to TRIM25 ubiquitination of PA and subsequent degradation of PA in the proteasome. This mode of action conforms to that of a proteolysis targeting chimera which employs the cellular ubiquitin-proteasome machinery to chemically induce the degradation of target proteins. Importantly, APL-16-5 potently inhibits IAV and protects mice from lethal IAV infection. Therefore, we have identified a natural microbial metabolite with potent in vivo anti-IAV activity and the potential of becoming a new IAV therapeutic. The antiviral mechanism of APL-16-5 opens the possibility of improving its anti-IAV potency and specificity by adjusting its affinity for TRIM25 and viral PA protein through medicinal chemistry.


Subject(s)
Influenza A virus , Influenza, Human , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Endonucleases/metabolism , Humans , Influenza A virus/metabolism , Influenza, Human/metabolism , Mice , Proteasome Endopeptidase Complex/metabolism , Viral Proteins/metabolism , Virus Replication
20.
Cell Rep ; 39(1): 110625, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385753

ABSTRACT

Protein disulfide isomerase (PDI) plays a key role in maintaining cellular homeostasis by mediating protein folding via catalyzing disulfide bond formation, breakage, and rearrangement in the endoplasmic reticulum. Increasing evidence suggests that PDI can be a potential treatment target for several diseases. However, the function of PDI in the peripheral sensory nervous system is unclear. Here we report the expression and secretion of PDI from primary sensory neurons is upregulated in inflammatory and neuropathic pain models. Deletion of PDI in nociceptive DRG neurons results in a reduction in inflammatory and neuropathic heat hyperalgesia. We demonstrate that secreted PDI activates TRPV1 channels through oxidative modification of extracellular cysteines of the channel, indicating that PDI acts as an unconventional positive modulator of TRPV1. These findings suggest that PDI in primary sensory neurons plays an important role in development of heat hyperalgesia and can be a potential therapeutic target for chronic pain.


Subject(s)
Chronic Pain , Protein Disulfide-Isomerases , Animals , Hot Temperature , Humans , Hyperalgesia/metabolism , Mice , Oxidation-Reduction , Protein Disulfide-Isomerases/metabolism , Protein Folding , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...