Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Sci Total Environ ; 934: 173254, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38761924

ABSTRACT

Air pollution has been recognized as a contributing factor to sleep disorders (SD), which have been correlated with an elevated susceptibility to a variety of human diseases. Nevertheless, research has not definitively established a connection between SD and interior decorative volatile organic compounds (ID-VOCs), a significant indoor air pollutant. In this study, we employed a mouse model exposed to ID-VOCs to explore the impacts of ID-VOCs exposure on sleep patterns and the potential underlying mechanism. Of the 23 key compositions of ID-VOCs identified, aromatic hydrocarbons were found to be the most prevalent. Exposure to ID-VOCs in mice resulted in SD, characterized by prolonged wake fullness and decreased sleep during the light period. ID-VOCs exposure triggered neuroinflammatory responses in the suprachiasmatic nucleus (SCN), with microglia activation leading to the overproduction of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), and complement component 1q (C1q), ultimately inducing A1 astrocytes. Consequently, the upregulation of branched chain amino acid transaminase 2 (BCAT2) in A1 astrocytes resulted in elevated extracellular glutamate and disruption of the wake-sleep transition mechanism, which might be the toxicological mechanism of SD caused by ID-VOCs.

2.
Arch Toxicol ; 98(6): 1629-1643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38536500

ABSTRACT

Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.


Subject(s)
Nanoparticles , Organelles , Pulmonary Fibrosis , Soot , Soot/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Humans , Nanoparticles/toxicity , Organelles/drug effects , Organelles/metabolism , Animals , Particle Size , Inhalation Exposure/adverse effects , Lung/drug effects , Lung/pathology
3.
J Hazard Mater ; 465: 133190, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38071773

ABSTRACT

Fine particulate matter (PM2.5) as an environmental pollutant is related with respiratory and cardiovascular diseases. Pulmonary arterial hypertension (PAH) was characterized by incremental pulmonary artery pressure and pulmonary arterial remodeling, leading to right ventricular hypertrophy, and finally cardiac failure and death. The adverse effects on pulmonary artery and the molecular biological mechanism underlying PM2.5-caused PAH has not been elaborated clearly. In the current study, the ambient PM2.5 exposure mice model along with HPASMCs models were established. Based on bioinformatic methods and machine learning algorithms, the hub genes in PAH were screened and then adverse effects on pulmonary artery and potential mechanism was studied. Our results showed that chronic PM2.5 exposure contributed to increased pulmonary artery pressure, pulmonary arterial remodeling and right ventricular hypertrophy in mice. In vitro, PM2.5 induced phenotypic switching in HPASMCs, which served as the early stage of PAH. In mechanism, we investigated that PM2.5-mediated mitochondrial dysfunction could induce phenotypic switching in HPASMCs, which was possibly through reprogramming lipid metabolism. Next, we used machine learning algorithm to identify ELK3 as potential hub gene for mitochondrial fission. Besides, the effect of DNA methylation on ELK3 was further detected in HPASMCs after PM2.5 exposure. The results provided novel directions for protection of pulmonary vasculature injury, against adverse environmental stimuli. This work also provided a new idea for the prevention of PAH, as well as provided experimental evidence for the targeted therapy of PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Mice , Cell Proliferation , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertrophy, Right Ventricular/metabolism , Lipid Metabolism , Myocytes, Smooth Muscle/metabolism , Particulate Matter/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/metabolism , Vascular Remodeling
4.
Environ Pollut ; 335: 122324, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37544399

ABSTRACT

Accumulating evidence has suggested that men exposed to air pollution are associated with decreased sperm quality, and seminal plasma plays a pivotal role in maintaining sperm viability. However, the role of seminal plasma in air pollution related sperm quality decline remain unestablished. In current study, we recruited 524 participants from couples who underwent in vitro fertilization treatment due to female factors at a fertility clinic in China from March to August 2020. Conventional sperm parameters, total antioxidant capacity (T-AOC), malondialdehyde (MDA) and testosterone were measured using semen samples. The six main air pollutants (PM2.5, PM10, NO2, SO2, CO, O3) during four key periods of sperm development (meiotic stage, spermiogenesis stage, epididymal stage and total sperm cycle period) were estimated using inverse distance weighting method. Multiple linear regression models were employed to investigate the exposure-outcome relationships. And we found that PM10 exposures were negatively related to sperm total motility and the exposures of PM2.5 and PM10 were inversely associated with sperm progressive motility during epididymal stage. Furthermore, PM2.5 and PM10 exposures were positively associated with seminal plasma MDA and PM10 was negatively related to seminal plasma T-AOC during epididymal stage. PM2.5, PM10 and CO exposures during total sperm cycle period might relate to increased seminal plasma testosterone. Mediation analysis indicated seminal plasma MDA and T-AOC partially mediated PM10 associated reduction of sperm motility during epididymal stage. Our study suggested MDA and T-AOC of seminal plasma played a role in air pollution associated decline of sperm motility.


Subject(s)
Air Pollutants , Air Pollution , Male , Humans , Female , Semen , Antioxidants/pharmacology , Malondialdehyde/analysis , Particulate Matter/analysis , Sperm Motility , Spermatozoa , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , China
5.
Ecotoxicol Environ Saf ; 262: 115311, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37531926

ABSTRACT

A complete understanding of the associations of ambient air pollution with prevalence of pulmonary nodule is lacking. We aimed to investigate the associations of ambient air pollutants with prevalence of pulmonary nodule. A total of 9991 health examination participants was enrolled and 3166 was elected in the final in Shijiazhuang between April 1st, 2018, and December 31st, 2018. 107 participants were diagnosed in pulmonary nodule while 3059 participants were diagnosed in non-pulmonary (named control). The individual exposure of participants was evaluation by Empirical Bayesian Kriging model according to their residential or work addresses. The pulmonary nodules were found and diagnosed by health examination through chest x-ray detection. Our results suggested that there were positive associations between prevalence of pulmonary nodules and PM2.5 (OR = 1.06, 95% CI: 1.02, 1.11) as well as O3 (OR = 1.49, 95% CI: 1.35, 1.66) levels. The platelet count (PLT) acted as the mediator of pulmonary nodules related with the PM2.5 exposure, while the neutrophil-to-lymphocyte ratio (NLR) as well as platelet-to-lymphocyte ratio (PLR) were the mediators of pulmonary nodules related with the O3 exposure. This study suggests that long-term exposure to PM2.5 and O3 may significantly associated with prevalence of pulmonary nodules, and the above associations are mediated by PLT, NLR and PLR.

6.
Ecotoxicol Environ Saf ; 263: 115309, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37517308

ABSTRACT

Epidemiological studies have established an association between chronic exposure to PM2.5 and male infertility. However, the underlying mechanisms were not fully revealed. In this study, we established mice models exposed to PM2.5 for 16 weeks, and a significant decrease in sperm quality accompanied by an increase in testosterone levels were observed after PM2.5 exposure. Moreover, treatment with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, effectively mitigated PM2.5-induced testicular dysfunction in mice. And lipid peroxidation and ferritin accumulation were found to be significantly increased in Leydig cells of testes with a PM2.5-dose dependent manner. Further investigations revealed that TM-3 cells, a mouse Leydig cell line, were prone to ferroptosis after PM2.5 exposure, and the cell viability was partly rescued after the intervention of Fer-1. Furthermore, our results supported that the ferroptosis of TM-3 cells was attributed to the upregulation of ferredoxin 1 (FDX1), which was the protein transferring electrons to cytochrome P450 family 11 subfamily A member 1 to aid lysing cholesterol to pregnenolone at initial of steroidogenesis. Mechanically, PM2.5-induced FDX1 upregulation resulted in cellular ROS elevation and ferrous iron overload, which together initiated an autoxidation process of polyunsaturated fatty acids in the cell membrane of Leydig cells until the accumulated lipid peroxides triggered ferroptotic cell death. Simultaneously, upregulation of FDX1 promoted steroidogenesis and let to an increased level of testosterone. In summary, our work suggested that FDX1, a mediator involving steroidogenesis, was a key regulator in PM2.5-induced Leydig cells ferroptosis.


Subject(s)
Ferroptosis , Leydig Cells , Male , Mice , Animals , Leydig Cells/metabolism , Semen , Testosterone/metabolism , Particulate Matter/metabolism
7.
Toxics ; 11(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37505566

ABSTRACT

Plastics in the environment can break down into nanoplastics (NPs), which pose a potential threat to public health. Studies have shown that the nervous system constitutes a significant target for nanoplastics. However, the potential mechanism behind nanoplastics' neurotoxicity remains unknown. This study aimed to investigate the role of lncRNA in the depressive-like responses induced by exposure to 25 nm polystyrene nanoplastics (PS NPs). Forty mice were divided into four groups administered doses of 0, 10, 25, and 50 mg/kg via gavage for 6 months. After conducting behavioral tests, RNA sequencing was used to detect changes in mRNAs, miRNAs, and lncRNAs in the prefrontal cortex of the mice in the 0 and 50 mg/kg PS NPs groups. The results revealed that mice exposed to chronic PS NPs developed depressive-like responses in a dose-dependent manner. It was demonstrated that 987 mRNAs, 29 miRNAs, and 116 lncRNAs were significantly different between the two groups. Then, a competing endogenous RNA (ceRNA) network containing 6 lncRNAs, 18 miRNAs, and 750 mRNAs was constructed. Enrichment results suggested that PS NPs may contribute to the onset of depression-like responses through the activation of axon guidance, neurotrophin-signaling pathways, and dopaminergic synapses. This study provided evidence of the molecular relationship between PS NPs and depression-like responses.

8.
J Hazard Mater ; 457: 131791, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37295326

ABSTRACT

Fine particulate matters (PM2.5) increased the risk of pulmonary fibrosis. However, the regulatory mechanisms of lung epithelium in pulmonary fibrosis remained elusive. Here we developed PM2.5-exposure lung epithelial cells and mice models to investigate the role of autophagy in lung epithelia mediating inflammation and pulmonary fibrosis. PM2.5 exposure induced autophagy in lung epithelial cells and then drove pulmonary fibrosis by activation of NF-κB/NLRP3 signaling pathway. PM2.5-downregulated ALKBH5 protein expression promotes m6A modification of Atg13 mRNA at site 767 in lung epithelial cells. Atg13-mediated ULK complex positively regulated autophagy and inflammation in epithelial cells with PM2.5 treatment. Knockout of ALKBH5 in mice further accelerated ULK complex-regulated autophagy, inflammation and pulmonary fibrosis. Thus, our results highlighted that site-specific m6A methylation on Atg13 mRNA regulated epithelial inflammation-driven pulmonary fibrosis in an autophagy-dependent manner upon PM2.5 exposure, and it provided target intervention strategies towards PM2.5-induced pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Animals , Mice , Pulmonary Fibrosis/chemically induced , Methylation , Mice, Knockout , Inflammation/chemically induced , Particulate Matter/toxicity , Autophagy , RNA, Messenger
9.
Chemosphere ; 315: 137749, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36610517

ABSTRACT

Epidemiological studies have demonstrated strong associations between exposure to ambient fine particulate matter (PM2.5) and cardiac disease. To investigate the potential mechanism of cardiac fibrosis induced by PM2.5, we established PM2.5 exposure models in vivo and in vitro, and then cardiac fibrosis was evaluated. The ferroptosis and ferritinophagy was detected to characterize the effects of PM2.5 exposure. The results indicated that PM2.5 exposure could induce cardiac fibrosis in mice. YY1 was induced by PM2.5 exposure and then increased NCOA4, a cargo receptor for ferritinophagy, which interacted with FHC and promoted the transport of ferritin to the autophagosome for degradation. The release of large amounts of free iron from ferritinophagy led to lipid peroxidation directly via the Fenton reaction, thereby triggering ferroptosis. Moreover, siNCOA4 could partly restore the FHC protein level in HL-1 cells and inhibit the occurrence of downstream ferroptosis. Functionally, NCOA4 knockdown inhibited ferroptosis and alleviated HL-1 cell death induced by PM2.5. Ferroptosis inhibitor (Ferrostatin-1) could reverse the promoting effect of ferritinophagy mediated ferroptosis on cardiac fibrosis induced by PM2.5 exposure in mice. Our study indicated that PM2.5 induced cardiac fibrosis through YY1 regulating ferritinophagy-dependent ferroptosis.


Subject(s)
Ferroptosis , Animals , Mice , Autophagy , Fibrosis , Particulate Matter/toxicity , Reactive Oxygen Species/metabolism
10.
Sci Total Environ ; 858(Pt 3): 160174, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36379326

ABSTRACT

Plenty of rural populations still chronically exposed to indoor coal burning, which tremendously raises the risk of cardiovascular disease, in China. This study aimed to further investigate the association between indoor coal burning exposure and atherosclerotic cardiovascular diseases to search for relevant markers for disease prevention. Herein, we conducted a cross-sectional study, carried out on 752 local long-term residents with or without bituminous coal for cooking and heating indoor, in Nangong County, Hebei Province, China. We utilized a nearest neighbor propensity score match (PSM) with a caliper distance equal to 0.001 to eliminate bias caused by confounding factors. The expression of genes associated with endothelial activation (CCL2, CCL5, CXCL8, CXCL12, VCAM, ICAM, SELP) in primary human coronary artery endothelial cells (HCAECs) were quantified through ex vivo biosensor assay. Multiple linear regression models with stratification analyses by gender and binary logit regression models were used to evaluate the association between mRNA expression of biosensor genes and indoor coal burning pollution or carotid atherosclerosis, respectively. Protein secretion level was detected by enzyme-linked immunosorbent assay (ELISA). The prevalence of carotid atherosclerosis in exposure group was higher than control (P = 0.023), before PSM. The gene expression of CCL2 in exposure group was significantly higher than control (P = 0.002). Indoor coal burning exposure was correlated with gene expression of CCL2 (ß = 3.45, 95 % CI: 0.04-6.87, P = 0.047) and CXCL8 (ß = 1.25, 95 % CI: 0.02-2.49, P = 0.046) in female. A higher risk of carotid atherosclerosis was observed in the same as the increase expression of CCL2 (OR = 1.07, 95 % CI: 1.01-1.14, P = 0.020). In conclusion, prolonged exposure to indoor coal burning could elevate the gene expression of CCL2 by activating vascular endothelial cells and was relative to the initiation of carotid atherosclerosis.


Subject(s)
Carotid Artery Diseases , Coal , Humans , Female , Endothelial Cells , Cross-Sectional Studies , China/epidemiology
11.
Sci Total Environ ; 854: 158598, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36108849

ABSTRACT

Exposure to PM2.5 increases blood pressure (BP) and cardiovascular morbidity and mortality. We conducted a randomized controlled panel study in Shijiazhuang, China among 55 healthy college students randomly assigned to either the control (CON) or SPORTS group with intervention of 2000 m jogging in 20 min for 3 times in 4 days, and 3-round health examinations from November 15, 2020 to December 6, 2020. We aimed to evaluate whether moderate physical activity (PA) protected BP health against PM2.5 exposure and explore potential mechanisms through myokines and inflammation. Individual PM2.5 exposure was calculated based on outdoor and indoor PM2.5 concentration monitoring data as well as time-activity diary of each subject. In the CON group, the exposure-response curve for SBP was linear with a threshold concentration of approximately 31 µg/m3, while an increment of SBP level was 4.38 mm Hg (95%CI: 0.17 mm Hg, 8.59 mm Hg) at lag03 for each 10-µg/m3 increase in PM2.5, using linear mixed-effect models. For inflammatory indicators, PM2.5 exposure was associated with significant increases in eosinophil counts and proportion in CON group, but decreases in MCP-1 and TNF-α in SPORTS group. Meanwhile, higher myokines including CLU and IL-6 were observed in SPORTS group compared to the CON group. Further mediation analyses revealed that eosinophil counts mediated the elevated BP in CON group, whereas MCP-1 and TNF-α were also crucial mediating cytokines for the SPORTS group, as well as CLU and IL-6 acted as mediators on BP and inflammation indicators in SPORTS group. This study suggests that moderate PA could counteract the elevated BP induced by PM2.5 exposure via myokines-suppressed inflammation pathways.


Subject(s)
Air Pollutants , Air Pollution , Hypertension , Humans , Blood Pressure , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Interleukin-6 , Tumor Necrosis Factor-alpha , Inflammation/chemically induced , China , Exercise , Air Pollution/analysis
12.
Ecotoxicol Environ Saf ; 243: 114008, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36029575

ABSTRACT

Exposure to fine particulate matter (PM2.5) has significant effects on human skin health, mainly disrupting skin homeostasis and accelerating aging. To date, the effects of PM2.5 on psoriasis (PSO) have not been elucidated. An ambient particulate matter exposed and well characterized imiquimod (IMQ)-induced psoriasis mouse model was established. Thirty male C57BL/6 mice aged 8 weeks were randomly divided into three groups: filtered air (FA) group (Control group), PSO+ FA group and PSO + PM2.5 group. A KRT17 knockdown (KRT17-KD) mouse model was simultaneously established by subcutaneously injecting KRT17-KD lentivirus. Forty male C57BL/6 mice were randomly divided into four groups: PSO + FA + KRT17-RNAi negative control lentivirus (KRT17-NC) group, PSO+ FA+ KRT17-KD group, PSO + PM2.5 + KRT17-NC group and PSO + PM2.5 + KRT17-KD group. PM2.5 exposure continued for 8 weeks. Psoriasis was induced by topically applying IMQ on the dorsal skin of the mice for 6 days during week 8. Morphometric and histological analyses were performed to investigate the changes in psoriatic lesions. Differentially expressed genes and enriched pathways were explored using bioinformatics analysis and showed that KRT17 gene and the vascular endothelial growth factor receptor signaling pathway were associated with psoriasis. HaCaT cells were stimulated with interleukin-17A and infected with KRT17-KD lentivirus to establish an in vitro KRT17 knockdown psoriasis cell model. Notably, PM2.5 exposure increased the expression of KRT17 protein and activated AKT/mTOR/HIF-1α signaling pathway in vivo. Moreover, specific agonist of AKT (740Y-P) reversed the decreased neovascularization induced by KRT17 knockdown through AKT/mTOR/HIF-1α signaling pathway in vitro. Consequently, PM2.5 exposure could promote the development and progression of psoriasis through KRT17-dependent activation of AKT/mTOR/HIF-1α signaling pathway.


Subject(s)
Proto-Oncogene Proteins c-akt , Psoriasis , Animals , Male , Mice , Imiquimod/toxicity , Inflammation/chemically induced , Mice, Inbred C57BL , Particulate Matter/toxicity , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Psoriasis/chemically induced , Psoriasis/genetics , Psoriasis/pathology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Vascular Endothelial Growth Factor A
13.
Front Pharmacol ; 13: 873055, 2022.
Article in English | MEDLINE | ID: mdl-35814198

ABSTRACT

Fine particulate matter (PM2.5) is well known to impair lung function. Strategies protecting against PM2.5-exerted lung dysfunction have been less investigated. Qianjinweijing decoction (QJWJ), a decoction of a herbal medicine of natural origin, has been used to treat lung disorders as it inhibits oxidation and inflammation. However, no clinical trial has yet evaluated the role of QJWJ in PM2.5-induced lung dysfunction. Therefore, we conducted a randomized, double-blind, placebo-controlled trial to assess whether QJWJ provided lung benefits against the adverse effects of PM2.5 exposure among adults. Eligible participants (n = 65) were recruited and randomized to receive QJWJ decoction (n = 32) or placebo (n = 33) for 4 weeks. The restrictive ventilatory defect (RVD), lung function parameters, and induced sputum were analyzed. The PM2.5 exposure concentration was significantly associated with the vital capacity (VC), peak expiratory flow (PEF), and forced expiratory flow at 75% of the forced vital capacity (FEF75). The negative associations between PM2.5 and the lung function parameters were eliminated in response to the QJWJ intervention. Additionally, the percentage of RVD (P = 0.018) and the proportion of eosinophils (Eo%) in induced sputum (P = 0.014) in the QJWJ group was significantly lower than that in the placebo group. This study demonstrated that QJWJ could alleviated PM2.5-induced lung dysfunction and could be a potential treatment for air pollution-related chronic respiratory disease.

14.
Environ Res ; 213: 113678, 2022 10.
Article in English | MEDLINE | ID: mdl-35710025

ABSTRACT

Silica nanoparticles (SiNPs) cause pulmonary fibrosis through a complex immune response, but the underlying mechanisms by which SiNPs interact with T cells and affect their functions remain unclear. The T cell receptor (TCR) repertoire is closely related to T cell activation and proliferation and mediates innate and adaptive immunity. High-throughput sequencing of the TCR enables comprehensive monitoring of the immune microenvironment. Here, the role of the TCRß repertoire was explored using a mouse model of SiNP-induced pulmonary fibrosis and a co-culture of RAW264.7 and CD4+ T cells. Our results demonstrated increased TCRß expression and decreased CD25 and CD69 expression in CD4+ T cells from peripheral blood and lung collected 14 days after the induction of pulmonary fibrosis by SiNPs. Simultaneously, SiNPs significantly decreased CD25 and CD69 expression in CD4+ T cells in vitro via RAW264.7 cell presentation. Mechanistically, pLCK and pZap70 expression, involved in mediating T cell activation, were also decreased in the lung of mice with SiNP-induced pulmonary fibrosis. Furthermore, the profile of the TCRß repertoire in mice with SiNP-induced pulmonary fibrosis showed that SiNPs markedly altered the usage of V genes, VJ gene combinations, and CDR3 amino acids in lung tissue. Collectively, our data suggested that SiNPs could interfere with T cell activation by macrophage presentation via the LCK/Zap70 pathway and rearrange the TCRß repertoire for adaptive immunity and the pulmonary microenvironment.


Subject(s)
Nanoparticles , Pulmonary Fibrosis , Animals , Mice , Nanoparticles/chemistry , Nanoparticles/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Receptors, Antigen, T-Cell , Silicon Dioxide/chemistry , Silicon Dioxide/toxicity , T-Lymphocytes
15.
Ecotoxicol Environ Saf ; 241: 113785, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35753268

ABSTRACT

Plastics breaking down of larger plastics into smaller ones (microplastics and nanoplastic) as potential threats to the ecosystem. Previous studies demonstrate that the central nervous system (CNS) is a vulnerable target of nanoplastics. However, the potentially epigenetic biomarkers of nanoplastic neurotoxicity in rodent models are still unknown. The present research aimed to determine the role of competing endogenous RNA (ceRNA) in the process of polystyrene nanoplastics (PS NPs) exposure-induced nerve injury. The study was designed to investigate whether 25 nm PS NPs could cause learning dysfunction and to elucidate the underlying mechanisms in mice. A total of 40 mice were divided into 4 groups and were exposed to PS NPs (0, 10, 25, 50 mg/kg). Chronic toxicity was introduced in mice by administration of oral gavage for 6 months. The evaluation included assessment of their behavior, pathological investigation and determination of the levels of reactive oxygen species (ROS) and DNA damage. RNA-Seq was performed to detect the expression levels of circRNAs, miRNAs and mRNAs in PFC samples of mice treated with 0 and 50 mg/kg PS NPs. The results indicated that exposure of mice to PS NPs caused a dose-dependent cognitive decline. ROS levels and DNA damage were increased in the PFC following exposure of the mice to PS NPs. A total of 987 mRNAs, 29 miRNAs and 67 circRNAs demonstrated significant differences between the 0 and 50 mg/kg PS NPs groups. Functional enrichment analyses indicated that PS NPs may induce major injury in the synaptic function. A total of 96 mRNAs, which were associated with synaptic dysfunction were identified. A competing endogenous RNA (ceRNA) network containing 27 circRNAs, 19 miRNAs and 35 synaptic dysfunction-related mRNAs was constructed. The present study provided insight into the molecular events associated with nanoplastic toxicity and induction of cognitive dysfunction.


Subject(s)
Cognitive Dysfunction , MicroRNAs , Nanoparticles , RNA, Circular , Animals , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/etiology , Ecosystem , Mice , MicroRNAs/genetics , Microplastics , Nanoparticles/toxicity , Plastics , Polystyrenes/toxicity , RNA, Circular/genetics , RNA, Messenger/genetics , Reactive Oxygen Species
16.
Ecotoxicol Environ Saf ; 237: 113537, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35468441

ABSTRACT

Both long-term exposure to air pollution and abnormal fasting blood glucose (FBG) are linked to dyslipidemia prevalence. However, the joint role of air pollution and FBG on dyslipidemia remains unknown clearly. In this study, we aimed to test whether abnormal FBG could enhance the risks of long-term exposure to air pollutants on dyslipidemia in general Chinese adult population. The present study recruited 8917 participants from 4 cities in Hebei province, China. Participants' individual exposure to air pollutants was evaluated by the Empirical Bayesian Kriging statistical model in ArcGIS10.2 geographic information system. Dyslipidemia was defined according to Guidelines for the Prevention and Treatment of Dyslipidemia in Chinese Adults. Subjects were grouped into normal, prediabetes, diabetes according to FBG level. Generalized linear models were applied to analyze the interaction of air pollutants and FBG on dyslipidemia prevalence. The prevalence of dyslipidemia was 43.83% in our investigation. After adjusting all covariates, we found the risk of four air pollutants (PM2.5, PM10, NO2, SO2) on dyslipidemia prevalence was stronger as higher FBG level, and the adjusted odd ratio of interaction (ORinter (95% CI)) between PM2.5, PM10, NO2, SO2 and FBG levels on dyslipidemia was 1.171 (1.162, 1.189), 1.119 (1.111, 1.127), 1.124 (1.115, 1.130), 1.107 (1.098, 1.115), respectively. Stratified analyses indicated the modifying effects of FBG on the association of air pollution with dyslipidemia were stronger among male, less than 65 years old, overweight/obesity (all Pinter<0.1). Our study concluded that high FBG levels strengthened the risk of long-term exposure to air pollution on dyslipidemia, especially more noticeable in male, less than 65 years old, overweight.


Subject(s)
Air Pollutants , Air Pollution , Dyslipidemias , Adult , Aged , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Bayes Theorem , Blood Glucose/analysis , China/epidemiology , Cross-Sectional Studies , Dyslipidemias/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Fasting , Female , Humans , Male , Nitrogen Dioxide/analysis , Overweight , Particulate Matter/adverse effects , Particulate Matter/analysis
17.
J Hazard Mater ; 432: 128655, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35334267

ABSTRACT

Long-term inhalation of fine particulate matter (PM2.5) can cause serious effects on the respiratory system. It might be attributed to the fact that PM2.5 could directly enter and deposit in lung tissues. We established models of PM2.5 exposure in vivo and in vitro to explore the adverse effects of ambient PM2.5 on pulmonary and its potential pathogenic mechanisms. Our results showed that PM2.5 exposure promoted the deposition of ECM and the increased stiffness of the lungs, and then led to pulmonary fibrosis in time- and dose- dependent manners. Pulmonary function test showed restrictive ventilation function in mice after PM2.5 exposure. After PM2.5 exposure, ALKBH5 was recognized by TRIM11 and then degraded through the proteasome pathway. ALKBH5 deficiency (ALKBH5-/-) aggravated restrictive ventilatory disorder and promoted ECM deposition in lungs of mice induced by PM2.5. And the YAP1 signaling pathway was more activated in ALKBH5-/- than WT mice after PM2.5 exposure. In consequence, decreased ALKBH5 protein levels regulated miRNAs and then the miRNAs-targeted YAP1 signaling was activated to promote pulmonary fibrosis induced by PM2.5.


Subject(s)
MicroRNAs , Pulmonary Fibrosis , Animals , Lung/pathology , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Particulate Matter/metabolism , Particulate Matter/toxicity , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/toxicity , Pulmonary Fibrosis/chemically induced
18.
Sci Total Environ ; 821: 153456, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35093369

ABSTRACT

Growing evidence has indicated that air pollution is associated with depression, and damage of olfactory bulb (OB) is regarded as an early marker for depression. However, the toxicity of fine particulate matter (PM2.5) on OB and underlying mechanisms remains to be elucidated. In our study, a real-ambient PM2.5 exposure system was applied to explore the effects of PM2.5 on OB in C57BL/6 mice for 4 or 8 weeks. After 8 weeks exposure, the mice emerged potential depressive-like responses with reduction and disorder of cells in olfactory bulb tissues. Apoptosis and ultra-microstructure analysis indicated that the real-ambient PM2.5 exposure caused the neuronal death of OB. The immunofluorescence observation and KEGG pathway analysis revealed the real-ambient PM2.5 exposure induced microglia activation along with tumor necrosis factor α (TNFα)-mediated signaling enriched in OB of mice with depression-like behaviors. Moreover, results from ex vivo biosensor assay exhibited that PM2.5 might trigger systemic inflammation with increased levels of various proinflammatory factors to activate microglia. Further in vitro co-culture model identified that the PM2.5 evoked microglia cells activation with TNFα secretion and induced neuronal cells apoptosis via classical caspase3 signaling. Our findings provide new insights that PM2.5 induced microglia activation characterized by the release of TNFα to cause neurotoxicity either by direct action or by circulatory inflammation, resulting in OB damage, which may play a critical role in early diagnosis and pathogenic mechanisms for PM2.5 to cause depression.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/metabolism , Air Pollutants/toxicity , Animals , Depression/chemically induced , Mice , Mice, Inbred C57BL , Microglia , Olfactory Bulb , Particulate Matter/metabolism , Particulate Matter/toxicity
19.
Toxicol Sci ; 185(2): 143-157, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34735003

ABSTRACT

The association between ambient airborne fine particulate matter (PM2.5) exposure and respiratory diseases has been investigated in epidemiological studies. To explore the potential mechanism of PM2.5-induced pulmonary fibrosis, 60 mice were divided into 3 groups to expose to different levels of PM2.5 for 8 and 16 weeks: filtered air, unfiltered air, and concentrated PM2.5 air, respectively. BEAS-2B cells were treated with 0, 25, 50, and 100 µg/ml PM2.5 for 24 h. The biomarkers of pulmonary fibrosis, epithelial-mesenchymal transition, N6-methyladenosine (m6A) modification, and metabolism of mRNAs were detected to characterize the effect of PM2.5 exposure. The results illustrated that PM2.5 exposure induced pathological alteration and pulmonary fibrosis in mice. The expression of E-cadherin was decreased whereas vimentin and N-cadherin expression were increased in a dose- and time-dependent manner after PM2.5 exposure. Mechanistically, PM2.5 exposure increased the levels of METTL3-mediated m6A modification of CDH1 mRNA. As a target gene of miR-494-3p, YTHDF2 was upregulated by miR-494-3p down-regulation and then recognized m6A-modified CDH1 mRNA to inhibit the E-cad expression, consequently induced the EMT progression after PM2.5 exposure. Our study indicated that PM2.5 exposure triggered EMT progression to promote the pulmonary fibrosis via miR-494-3p/YTHDF2 recognized and METTL3 mediated m6A modification.


Subject(s)
Epithelial-Mesenchymal Transition , Pulmonary Fibrosis , Adenosine/analogs & derivatives , Animals , Cadherins/genetics , Mice , Particulate Matter/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Environ Res ; 207: 112161, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34626591

ABSTRACT

BACKGROUND: Congenital anomalies (CAs) are the leading causes for children's disabilities and mortalities worldwide. The associations between air pollution and CAs are not fully characterized in fetuses born by in vitro fertilization (IVF) who are at high risk of congenital anomalies. METHODS: We conducted a cross-sectional study including 16,971 IVF cycles from three hospitals in Hebei Province, China, 2014-2019. Air quality data was obtained from 149 air monitoring stations. Individual average daily concentrations of PM2.5, PM10, NO2, SO2, CO, and O3 were estimated by spatiotemporal kriging method. Exposure windows were divided into 5: preantral follicle period, antral follicle period, germinal period, embryonic period and early fetal period. Logistic generalized estimating equations were used to estimate the associations between air pollutants and overall or organ-system specific congenital anomalies. Negative control exposure method was used to detect and reduce bias of estimation. RESULTS: We found increasing levels of PM2.5 and PM10 were associated with higher risk of overall congenital anomalies during early fetal period, equating gestation 10-12 weeks (OR: 1.05, 95% CI: 1.02-1.09, p = 0.013 for a 10 µg/m3 increase of PM2.5; OR: 1.03, 95% CI: 1.01-1.06, p = 0.021 for a 10 µg/m3 increase of PM10). Cleft lip and cleft palate were associated with PM10 in germinal period and early fetal period. The CAs of eye, ear, face and neck were related to CO in preantral follicle stage. We did not find an association between chromosome abnormalities and air pollution exposure. CONCLUSIONS: We concluded that ambient air pollution was a risk factor for congenital anomalies in the fetuses conceived through IVF, especially exposure in early fetal period.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Child , China/epidemiology , Cross-Sectional Studies , Female , Fertilization in Vitro , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Parturition , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...