Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(15): 11283-11294, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38456549

ABSTRACT

The proton transfer reaction is one of the fundamental chemical reactions where the reaction dynamics strongly depend on solvent properties such as acidity or basicity. A photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) shows a sharp decrease of pKa (7.7 → 0.5) upon photoexcitation, and the excited-state proton transfer (ESPT) occurs with ultrafast time constants of 2.5 and 89 ps in bulk aqueous solution. However, the two-step proton transfers via the contact ion pair formation and the proton diffusion are strongly limited inside the nanopools of reverse micelles (RMs). The confinement in small RMs strongly impeded the proton transfer reactions. In this work, we report the ESPT of HPTS confined in methanol-in-oil RMs by steady-state and time-resolved electronic spectroscopy. Interestingly, HPTS shows substantial deprotonation in the excited state only in small RMs, while the ESPT of HPTS does not occur in bulk methanol solution due to the low basicity of aliphatic alcohols. The kinetic analysis of time-resolved fluorescence and transient absorption measurements will compare the proton transfer dynamics of HPTS in the water-in-oil and methanol-in-oil RMs. The ESPT of photoacids, especially in the nonaqueous RMs, can be crucial in understanding many important chemical reactions involving proton transfer in the confined environments of cells and membranes.

2.
Nat Commun ; 14(1): 7667, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996475

ABSTRACT

Metal nanoparticle-organic interfaces are common but remain elusive for controlling reactions due to the complex interactions of randomly formed ligand-layers. This paper presents an approach for enhancing the selectivity of catalytic reactions by constructing a skin-like few-nanometre ultrathin crystalline porous covalent organic overlayer on a plasmonic nanoparticle surface. This organic overlayer features a highly ordered layout of pore openings that facilitates molecule entry without any surface poisoning effects and simultaneously endows favourable electronic effects to control molecular adsorption-desorption. Conformal organic overlayers are synthesised through the plasmonic oxidative activation and intermolecular covalent crosslinking of molecular units. We develop a light-operated multicomponent interfaced plasmonic catalytic platform comprising Pd-modified gold nanoparticles inside hollow silica to achieve the highly efficient and selective semihydrogenation of alkynes. This approach demonstrates a way to control molecular adsorption behaviours on metal surfaces, breaking the linear scaling relationship and simultaneously enhancing activity and selectivity.

3.
Nanoscale ; 14(47): 17789-17801, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36440545

ABSTRACT

Cesium lead bromide perovskite nanocrystals (NCs) embedded in Cs4PbBr6 or CsPb2Br5 matrices forming core/shell structures are promising luminescent materials that exhibit remarkable photoluminescence properties meeting the need in a wide range of applications while overcoming stability challenges. Here, we report the large-scale, ligand-free synthesis of dual-phase Cs4PbBr6/CsPbBr3 microcrystals (MCs) using ultrasonication at room temperature, exhibiting a high photoluminescence quantum yield (PLQY) of 82.7% and good stability. High-resolution transmission electron microscopy and X-ray photoelectron characterization confirm that CsPbBr3 NCs are embedded in the Cs4PbBr6 matrix-forming CsPbBr3/Cs4PbBr6 dual-phase structure. The evolution of the luminescence properties with temperature suggests that the strong green emission results from direct exciton recombination in the isolated [PbBr6]4- octahedra, which possess a large exciton binding energy of 283.6 meV. As revealed from their emission intensities, the dual-phase CsPbBr3/Cs4PbBr6 MCs demonstrate excellent stability against ultraviolet irradiation (76%), good moisture resistance (42.7%), and good thermal tolerance (51%). It is understood that such excellent PLQY and stability are due to the surface passivation of the CsPbBr3 NCs attributed to the large bandgap as well as the isolated [PbBr6]4- octahedra separated by Cs+ ions in the Cs4PbBr6 crystal lattice. Finally, the suitability of the green-emitting CsPbBr3/Cs4PbBr6 material for achieving white-light emission and a wide color gamut is evaluated by constructing a prototype white light-emitting diode (w-LED) using CsPbBr3/Cs4PbBr6 and red-emitting K2SiF6:Mn4+ materials taken in different weight ratios and combined with a blue light-emitting InGaN LED chip (λ = 455 nm). The constructed w-LED device exhibits the color coordinates (0.3315, 0.3289), an efficacy of 68 lm W-1, a color rendering index of 87%, a color temperature of 5564 K, and a wide color gamut of ∼118.78% (NTSC) and ∼88.69% (Rec. 2020) with RGB color filters in the CIE 1931 color space. Therefore, based on our present findings, we strongly believe that the dual-phase CsPbBr3/Cs4PbBr6 material is a promising green-emitting phosphor for use in w-LEDs as the backlight of display systems.

4.
Nanoscale Adv ; 4(13): 2794-2805, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-36132004

ABSTRACT

Silver colloidal films (SCFs) composed of homogeneous 60-220 nm silver nanoparticles were synthesized for optimal fluorescence enhancement of chromophores with the dipole and quadrupole surface plasmons. The fluorescence enhancements with the SCFs of three chromophores, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran, 4-dimethylamino-4'-nitrobiphenyl, and coumarin 343 whose emission spectra are centered distinctively in the 470-560 nm wavelength range were compared. Fluorescence enhancements and lifetime changes were investigated via time-resolved fluorescence spectroscopy. The spectral overlap between the chromophore's emission and the dipole or quadrupole surface plasmon resonance (SPR) bands determined the fluorescence enhancements with the SCFs. The dipole and quadrupole SPR bands both appeared to provide effective fluorescence enhancements of chromophores. This knowledge allows researchers to develop sensitive fluorescence sensors by combining nanoparticles with optimal dipole or quadrupole SPR bands in order to achieve fluorescence enhancement of a specific chromophore. The emission dynamics measurements with the SCFs were combined with the finite-difference time-domain simulation results for the local electric fields around the silver nanoparticles to enable discussion of metal-enhanced fluorescence mechanisms, including excitation and emission enhancements.

5.
Sci Rep ; 12(1): 6557, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35449231

ABSTRACT

The structural changes during the intramolecular charge transfer (ICT) of nitroaromatic chromophores, 4-dimethylamino-4'-nitrobiphenyl (DNBP) and 4-dimethylamino-4'-nitrostilbene (DNS) were investigated by femtosecond stimulated Raman spectroscopy (FSRS) with both high spectral and temporal resolutions. The kinetically resolved Raman spectra of DNBP and DNS in the locally-excited and charge-transferred states of the S1 state appear distinct, especially in the skeletal vibrational modes of biphenyl and stilbene including ν8a and νC=C. The ν8a of two phenyls and the νC=C of the central ethylene group (only for stilbene), which are strongly coupled in the planar geometries, are broken with the twist of nitrophenyl group with the ICT. Time-resolved vibrational spectroscopy measurements and the time-dependent density functional theory simulations support the ultrafast ICT dynamics of 220-480 fs with the twist of nitrophenyl group occurring in the S1 state of the nitroaromatic chromophores. While the ICT of DNBP occurs via a barrier-less pathway, the ICT coordinates of DNS are strongly coupled to several low-frequency out-of-phase deformation modes relevant to the twist of the nitrophenyl group.

6.
Phys Chem Chem Phys ; 24(10): 5794-5802, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35195633

ABSTRACT

Intramolecular charge transfer (ICT) of 4-(dicyanomethylene)-2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)vinyl]-4H-pyran (LD688) in DMSO solution was investigated by femtosecond stimulated Raman spectroscopy (FSRS) with 403 nm excitation. The molecular structure of LD688 is similar to that of a well-known push-pull chromophore, 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), except that the internal rotation of the electron-donating dimethylamino group is restricted with the introduction of the julolidine moiety. Upon photo-excitation, LD688 shows an ultrafast (1.0 ps) ICT followed by the vibrational relaxation (3-8 ps) in the charge-transfer (CT) state. Two distinct Raman spectra of LD688 in the locally excited (LE) and CT state of the S1 state were retrieved from FSRS measurements. Based on the time-dependent density functional theory (TDDFT) simulations, a "twisted" julolidine geometry of LD688 was proposed for the ICT state, which was further confirmed in comparison to the spectral changes of several push-pull chromophores with the π-conjugated backbone of stilbene, biphenyl, styrylpyran, styrylpyridinium, and styrene in terms of the skeletal vibrational modes of ν19b,py, νCC,ph, and νCN.

7.
Int J Mol Sci ; 23(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35163647

ABSTRACT

Intramolecular charge transfer (ICT) of curcumin in dimethyl sulfoxide (DMSO) solution in the excited state was investigated by femtosecond electronic and vibrational spectroscopy. Excited-state Raman spectra of curcumin in the locally-excited and charge-transferred (CT) state of the S1 excited state were separated due to high temporal (<50 fs) and spectral (<10 cm-1) resolutions of femtosecond stimulated Raman spectroscopy. The ultrafast (0.6-0.8 ps) ICT and subsequent vibrational relaxation (6-9 ps) in the CT state were ubiquitously observed in the ground- and excited-state vibrational modes of the solute curcumin and the νCSC and νS=O modes of solvent DMSO. The ICT of curcumin in the excited state was preceded by the disruption of the solvation shells, including the breakage of hydrogen bonding between curcumin and DMSO molecules, which occurs at the ultrafast (20-50 fs) time scales.


Subject(s)
Curcumin/chemistry , Dimethyl Sulfoxide/chemistry , Spectrum Analysis, Raman/methods
8.
Int J Mol Sci ; 22(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34769357

ABSTRACT

The intramolecular charge transfer (ICT) of 1-aminoanthraquinone (AAQ) in the excited state strongly depends on its solvent properties, and the twisted geometry of its amino group has been recommended for the twisted ICT (TICT) state by recent theoretical works. We report the transient Raman spectra of AAQ in a dimethylsulfoxide (DMSO) solution by femtosecond stimulated Raman spectroscopy to provide clear experimental evidence for the TICT state of AAQ. The ultrafast (~110 fs) TICT dynamics of AAQ were observed from the major vibrational modes of AAQ including the νC-N + δCH and νC=O modes. The coherent oscillations in the vibrational bands of AAQ strongly coupled to the nuclear coordinate for the TICT process have been observed, which showed its anharmonic coupling to the low frequency out of the plane deformation modes. The vibrational mode of solvent DMSO, νS=O showed a decrease in intensity, especially in the hydrogen-bonded species of DMSO, which clearly shows that the solvation dynamics of DMSO, including hydrogen bonding, are crucial to understanding the reaction dynamics of AAQ with the ultrafast structural changes accompanying the TICT.


Subject(s)
Anthraquinones/chemistry , Dimethyl Sulfoxide/chemistry , Electrons , Protons , Hydrogen Bonding , Vibration
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119408, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33433377

ABSTRACT

Gold nanosurfaces are widely applied to the surface-enhanced Raman spectroscopy (SERS) detection of the biological systems. The surface modification of gold nanoparticles (AuNPs) is often required when the analytes do not efficiently adsorb on the surface. In this paper, an aggregation of AuNPs with cetyltrimethylammonium bromide (CTAB) was introduced for the efficient surface adsorption and strong SERS enhancement for a number of hydroxyanthraquinones (HAQs). The SERS of HAQs including 1,2-dihydroxyanthraquinone (alizarin) were strongly enhanced with CTAB-modified AuNPs and deprotonation of alizarin was clearly observed upon the pH change. The CTAB-modified AuNPs are regarded as efficient SERS substrates for many biological molecules with weak surface adsorption.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119064, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33091739

ABSTRACT

Surface adsorption of a dipeptide L-alanyl-L-tryptophan (Ala-Trp) on gold nanoparticles reduced by citrate (CT) and borohydride (BH) ions was investigated by a surface-enhanced Raman scattering (SERS) technique. Two distinct SERS spectra of Ala-Trp depending on the types of gold nanoparticles were observed, and the vibrational assignments were based on the density functional theory simulations and the previous SERS results of Trp. Ala-Trp mainly adsorbs through the amine group on CT gold nanoparticles with a perpendicular orientation of the indole ring to the surface. In contrast, the adsorption occurs via the π electrons of the indole ring on the BH gold surfaces while maintaining a flat geometry of the indole ring to the surface. The amide I band of Ala-Trp was observed only with the CT gold colloids in acidic and neutral conditions where partial surface adsorption via the amide group is expected.


Subject(s)
Gold , Metal Nanoparticles , Spectrum Analysis, Raman , Adsorption , Dipeptides , Surface Properties , Tryptophan
11.
Int J Mol Sci ; 21(21)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121185

ABSTRACT

The excited state Raman spectra of 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) in the locally-excited (LE) and the intramolecular charge transfer (ICT) states have been separately measured by time-resolved stimulated Raman spectroscopy. In a polar dimethylsulfoxide solution, the ultrafast ICT of DCM with a time constant of 1.0 ps was observed in addition to the vibrational relaxation in the ICT state of 4-7 ps. On the other hand, the energy of the ICT state of DCM becomes higher than that of the LE state in a less polar chloroform solution, where the initially-photoexcited ICT state with the LE state shows the ultrafast internal conversion to the LE state with a time constant of 300 fs. The excited-state Raman spectra of the LE and ICT state of DCM showed several major vibrational modes of DCM in the LE and ICT conformer states coexisting in the excited state. Comparing to the time-dependent density functional theory simulations and the experimental results of similar push-pull type molecules, a twisted geometry of the dimethylamino group is suggested for the structure of DCM in the S1/ICT state.


Subject(s)
Hexanes/chemistry , Density Functional Theory , Molecular Structure , Spectrum Analysis, Raman
12.
Struct Dyn ; 6(6): 064901, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31867409

ABSTRACT

Ultrafast intramolecular proton transfers of 1,2-dihydroxyanthraquinone (alizarin-h2) and its deuterated product (alizarin-d2) in dimethyl sulfoxide (DMSO) have been investigated by femtosecond stimulated Raman spectroscopy. The population dynamics in the solute vibrational mode of νC=O and the coherent oscillations observed in all of the skeletal vibrational modes νC=O and νC=C clearly showed the ultrafast excited-state intramolecular proton transfer dynamics of 110 and 170 fs for alizarin-h2 and alizarin-d2, respectively. Interestingly, we have observed that the solvent vibrational modes νS=O and νCSC may also represent ultrafast structural dynamics at the frequencies for its "free" or "aggregated" species. From the kinetic analysis of the νS=O and νCSC modes of DMSO, the ultrafast changes in the solvation or intermolecular interactions between DMSO molecules initiated by the structural changes of solute molecules have been thoroughly investigated. We propose that the solvent vibrational modes νS=O and νCSC of DMSO can be used as a "sensor" for ultrafast chemical reactions accompanying the structural changes and subsequent solute-solvent interactions.

13.
Sci Rep ; 9(1): 3551, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837679

ABSTRACT

Metal-enhanced fluorescence of carotenoids, all-trans-ß-carotene and 8'-apo-ß-carotene-8'-al dispersed in thin layers of polystyrene and polyethylene glycol were investigated by time-resolved fluorescence spectroscopy. The weak emission signals of carotenoids in polymer films were increased by 4-40 times in the presence of a silver island film and the emission lifetimes of both carotenoids were measured as significantly shortened. The energy transfer from the intermediate states of carotenoids to the silver islands and the subsequent surface plasmon coupled emission were proposed for the mechanisms of metal-enhanced fluorescence. The fluorescence enhancements of carotenoids in the polymer films were also investigated statistically over a wide area of the silver island films.

14.
Phys Chem Chem Phys ; 21(22): 11599-11607, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-30901014

ABSTRACT

Homogeneous silver colloidal films (SCFs), composed of silver nanoparticles 67-193 nm in diameter, were synthesized by a seeded-growth method as the substrates for metal-enhanced fluorescence (MEF). The homogeneity and uniform particle distribution of the SCFs showed many advantages for the exploration of the MEF mechanism. The fluorescence enhancement of 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and rhodamine 700 (Rh700) dyes dispersed in a thin layer of polystyrene (PS) with the SCFs was observed by time-resolved fluorescence spectroscopy. The fluorescence enhancements of DCM and Rh700 become larger when the surface plasmon resonance bands of SCFs overlap the emission bands of dyes. The particle-size-dependent changes of the radiative and non-radiative rate constants of both dyes with the SCFs are estimated by an improved analysis combining the fluorescence intensity and lifetime measurements and the finite-difference time-domain method simulations.

15.
Sci Rep ; 7(1): 4786, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28684782

ABSTRACT

The energy flow during natural photosynthesis is controlled by maintaining the spatial arrangement of pigments, employing helices as scaffolds. In this study, we have developed porphyrin-peptoid (pigment-helix) conjugates (PPCs) that can modulate the donor-acceptor energy transfer efficiency with exceptional precision by controlling the relative distance and orientation of the two pigments. Five donor-acceptor molecular dyads were constructed using zinc porphyrin and free base porphyrin (Zn(i + 2)-Zn(i + 6)), and highly efficient energy transfer was demonstrated with estimated efficiencies ranging from 92% to 96% measured by static fluorescence emission in CH2Cl2 and from 96.3% to 97.6% using femtosecond transient absorption measurements in toluene, depending on the relative spatial arrangement of the donor-acceptor pairs. Our results suggest that the remarkable precision and tunability exhibited by nature can be achieved by mimicking the design principles of natural photosynthetic proteins.


Subject(s)
Energy Transfer , Peptoids/chemistry , Biomimetics , Metalloporphyrins/chemistry , Methylene Chloride , Molecular Structure , Photosynthesis , Porphyrins/chemistry , Toluene , Ultraviolet Rays
16.
J Phys Chem B ; 121(16): 4129-4136, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28375609

ABSTRACT

We report time-resolved stimulated Raman spectra of alizarin in DMSO solution with 403 nm excitation. Upon photoexcitation, the intramolecular proton transfer reaction of alizarin occurs in 70-80 fs, which is confirmed by both the population growth and the frequency and bandwidth changes of skeletal vibrational modes of alizarin. Interestingly, the vibrational frequencies of ν(C═C) and ν(C═O) show opposite shifts during the reaction, which may implicate changes in the resonance structure of anthraquinone and the attached carbonyl group. Vibrational relaxation in the potential surface of the proton transferred tautomer of alizarin and the population decay occurring with two distinct time scales were also observed in addition to the solvation dynamics of DMSO solvent molecules.

17.
J Nanosci Nanotechnol ; 17(4): 2685-689, 2017 04.
Article in English | MEDLINE | ID: mdl-29664581

ABSTRACT

Dye molecules attached to TiO2 nanoparticles have been of a great interest in the applications including dye-sensitized solar cells. In this paper, TiO2 nanoparticle sensitized with a natural photosynthetic dye, 8'-apo-ß-caroten-8'-oic acid (ACOA) was investigated by femtosecond transient absorption spectroscopy. Ultrafast excited state dynamics of ACOA and electron injection and recombination dynamics between dye molecules and TiO2 nanoparticles were compared by changing the excitation wavelength between 403 and 480 nm. Ultrafast electron injection into TiO2 nanoparticles with quantum yields of 0.33 was observed for both excitation wavelengths.

18.
J Nanosci Nanotechnol ; 16(2): 1629-32, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27433635

ABSTRACT

Fluorescence from dye molecules dispersed in thin polymer layers increases by 20-25 times when a silver island film exists beneath the layer. Polymer layers of <100 nm thick cover the silver island film to minimize emission quenching from direct contact and also keep the dye molecules in close proximity to the metal nanosurface for possible fluorescence enhancements by silver island film. We report an ultrafast radiation process of ~400 ps lifetime from the surface plasmons of silver nanoparticles observed in time-resolved fluorescence of rhodamine 6G and DCM in thin polymer films coated on silver island surface. The ultrafast energy transfer and fluorescence from metal nanoparticles might be strongly related to the efficiency of metal-enhanced fluorescence.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 166: 121-128, 2016 09 05.
Article in English | MEDLINE | ID: mdl-27224016

ABSTRACT

Surface-enhanced Raman scattering (SERS) of coumarin 343 (C343) adsorbed on silver colloidal nanoparticles reduced by sodium citrate was investigated and the surface adsorption geometry of C343 on Ag was sought by optimizing C343-Ag complexes for neutral and deprotonated C343 molecules in the DFT simulations. The SERS of C343 showed a number of spectral changes upon solution pH change. We found that deprotonated C343 adsorbs on the Ag nanoparticles through the carboxylate group keeping a perpendicular geometry to the surface. When protonated, the adsorption geometry of C343 is changed into more or less flat to the surface as the cyclic ester group becomes a preferred surface adsorption site.

20.
Phys Chem Chem Phys ; 12(25): 6782-8, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20448869

ABSTRACT

We present infrared and visible transient absorption measurements of 8'-apo-beta-caroten-8'-al following one-photon excitation at 405 nm. An excess vibrational energy of approximately 4000 cm(-1) in the S(2) state is created with 405 nm excitation. Relaxation from this vibronic region shows distinct relaxation pathways from those observed for 490 nm excitation which excites S(2) near its origin. Infrared and visible transient absorption measurements show long-lived transient signals that persist longer than 1 ns. These transient spectra are identical to those observed in previous two-photon excitation measurements at 1275 nm. Our results are consistent with at least two minima on the S(1) surface and a branched decay from hot S(2) molecules to at least two of these minima.


Subject(s)
Carotenoids/chemistry , Absorption , Kinetics , Photons , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...