Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2667, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177672

ABSTRACT

Anther development is precisely regulated by a complex gene network, which is of great significance to plant breeding. However, the molecular mechanism of anther development in Chinese cabbage is unclear. Here, we identified microRNAs (miRNAs), mRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) related to anther development in Chinese cabbage (Brassica campestris L. ssp. pekinensis) to construct competitive endogenous RNA (ceRNA) regulatory networks and provide valuable knowledge on anther development. Using whole-transcriptome sequencing, 9055, 585, 1344, and 165 differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs), lncRNAs (DElncRNAs), and circRNAs (DEcircRNAs) were identified, respectively, in the anthers of Chinese cabbage compared with those in samples of the vegetative mass of four true leaves. An anther-related ceRNA regulatory network was constructed using miRNA targeting relationships, and 450 pairs of ceRNA relationships, including 97 DEmiRNA-DEmRNA, 281 DEmiRNA-DElncRNA, and 23 DEmiRNA-DEcircRNA interactions, were obtained. We identified important genes and their interactions with lncRNAs, circRNAs, and miRNAs involved in microsporogenesis, tapetum and callose layer development, pollen wall formation, and anther dehiscence. We analyzed the promoter activity of six predominant anther expression genes, which were expressed specifically in the anthers of Arabidopsis thaliana, indicating that they may play an important role in anther development of Chinese cabbage. This study lays the foundation for further research on the molecular mechanisms of anther growth and development in Chinese cabbage.


Subject(s)
Brassica , Gene Expression Regulation, Plant , RNA, Plant , Transcriptome/physiology , Brassica/genetics , Brassica/metabolism , Genome-Wide Association Study , RNA, Plant/biosynthesis , RNA, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL