Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 181(6): 896-913, 2024 03.
Article in English | MEDLINE | ID: mdl-37309219

ABSTRACT

BACKGROUND AND PURPOSE: Overexpression of astrocytic lactoferrin (Lf) was observed in the brain of Alzheimer's disease (AD) patients, whereas the role of astrocytic Lf in AD progression remains unexplored. In this study, we aimed to evaluate the effects of astrocytic Lf on AD progression. EXPERIMENTAL APPROACH: Male APP/PS1 mice with astrocytes overexpressing human Lf were developed to evaluate the effects of astrocytic Lf on AD progression. N2a-sw cells also were employed to further uncover the mechanism of astrocytic Lf on ß-amyloid (Aß) production. KEY RESULTS: Astrocytic Lf overexpression increased protein phosphatase 2A (PP2A) activity and reduced amyloid precursor protein (APP) phosphorylation, Aß burden and tau hyperphosphorylation in APP/PS1 mice. Mechanistically, astrocytic Lf overexpression promoted the uptake of astrocytic Lf into neurons in APP/PS1 mice, and conditional medium from astrocytes overexpressing Lf inhibited p-APP (Thr668) expression in N2a-sw cells. Furthermore, recombinant human Lf (hLf) significantly enhanced PP2A activity and inhibited p-APP expression, whereas inhibition of p38 or PP2A activities abrogated the hLf-induced p-APP down-regulation in N2a-sw cells. Additionally, hLf promoted the interaction of p38 and PP2A via p38 activation, thereby enhancing PP2A activity, and low-density lipoprotein receptor-related protein 1 (LRP1) knockdown significantly reversed the hLf-induced p38 activation and p-APP down-regulation. CONCLUSIONS AND IMPLICATIONS: Our data suggested that astrocytic Lf promoted neuronal p38 activation, via targeting to LRP1, subsequently promoting p38 binding to PP2A to enhance PP2A enzyme activity, which finally inhibited Aß production via APP dephosphorylation. In conclusion, promoting astrocytic Lf expression may be a potential strategy against AD. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Male , Mice , Animals , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice, Transgenic , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Protein Phosphatase 2/metabolism , Lactoferrin/pharmacology , Astrocytes/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Presenilin-1/metabolism
2.
Glia ; 70(12): 2392-2408, 2022 12.
Article in English | MEDLINE | ID: mdl-35946355

ABSTRACT

Growing evidence indicates that circulating lactoferrin (Lf) is implicated in peripheral cholesterol metabolism disorders. It has emerged that the distribution of Lf changes in astrocytes of aging brains and those exhibiting neurodegeneration; however, its physiological and/or pathological role remains unknown. Here, we demonstrate that astrocyte-specific knockout of Lf (designated cKO) led to decreased body weight and cognitive abnormalities during early life in mice. Accordingly, there was a reduction in neuronal outgrowth and synaptic structure in cKO mice. Importantly, Lf deficiency in the primary astrocytes led to decreased sterol regulatory element binding protein 2 (Srebp2) activation and cholesterol production, and cholesterol content in cKO mice and/or in astrocytes was restored by exogenous Lf or a Srebp2 agonist. Moreover, neuronal dendritic complexity and total dendritic length were decreased after culture with the culture medium of the primary astrocytes derived from cKO mice and that this decrease was reversed after cholesterol supplementation. Alternatively, these alterations were associated with an activation of AMP-activated protein kinase (AMPK) and inhibition of SREBP2 nuclear translocation. These data suggest that astrocytic Lf might directly or indirectly control in situ cholesterol synthesis, which may be implicated in neurodevelopment and several neurological diseases.


Subject(s)
Astrocytes , Sterol Regulatory Element Binding Protein 2 , AMP-Activated Protein Kinases/metabolism , Animals , Astrocytes/metabolism , Cholesterol/metabolism , Lactoferrin/genetics , Lactoferrin/metabolism , Lactoferrin/pharmacology , Mice , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism
3.
Free Radic Biol Med ; 161: 139-149, 2020 12.
Article in English | MEDLINE | ID: mdl-33068737

ABSTRACT

Vitamin D (VD) deficiency is prevalent among aging people and Alzheimer's disease (AD) patients. However, the roles of VD deficiency in the pathology of AD remain largely unexplored. In this study, APP/PS1 mice were fed a VD-deficient diet for 13 weeks to evaluate the effects of VD deficiency on the learning and memory functions and the neuropathological characteristics of the mice. Our study revealed that VD deficiency accelerated cognitive impairment in the APP/PS1 mice. Mechanistic studies revealed that VD deficiency promoted glial activation and increased inflammatory factor secretion. Furthermore, VD deficiency increased the production and deposition of Aß by elevating the expression levels of amyloid precursor protein (APP) and ß-site APP cleavage enzyme 1 (BACE1). In addition, VD deficiency increased the phosphorylation of Tau at Thr181, Thr205 and Ser396 by increasing the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3α/ß (GSK3α/ß) and promoted synaptic dystrophy and neuronal loss. All these effects of VD deficiency may be ascribed to enhanced oxidative stress via the downregulation of superoxide dismutase 1 (SOD1), glutathione peroxidase 4 (GPx4) and cystine/glutamate exchanger (xCT). Taken together, our data suggest that VD deficiency exacerbates Alzheimer-like pathologies via promoting inflammatory stress, increasing Aß production and elevating Tau phosphorylation by decreasing antioxidant capacity in the brains of APP/PS1 mice. Hence, rescuing the VD status of AD patients should be taken into consideration during the treatment of AD.


Subject(s)
Alzheimer Disease , Vitamin D Deficiency , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Animals , Antioxidants , Aspartic Acid Endopeptidases , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Presenilin-1 , tau Proteins/genetics
4.
Front Aging Neurosci ; 12: 262, 2020.
Article in English | MEDLINE | ID: mdl-32973490

ABSTRACT

The microtubule-associated protein tau is closely correlated with hypometabolism in Alzheimer's disease (AD). α-lipoic acid (LA), which is a naturally occurring cofactor in mitochondrial, has been shown to have properties that can inhibit the tau pathology and neuronal damage in our previous research. However, if LA affects glucose metabolism when it reverses tau pathology remains unclear, especially concerning the potential mechanism. Therefore, we make a further study using the P301S mouse model (a tauopathy and AD mouse model which overexpressing fibrillary tau) to gain a clear idea of the aforementioned problems. Here, we found chronic LA administration significantly increased glucose availability by elevating glucose transporter 3 (GLUT3), GLUT4, vascular endothelial growth factor (VEGF) protein and mRNA level, and heme oxygenase-1 (HO-1) protein level in P301S mouse brains. Meanwhile, we found that LA also promoted glycolysis by directly upregulating hexokinase (HK) activity, indirectly by increasing proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and DNA repair enzymes (OGG1/2 and MTH1). Further, we found the underlying mechanism of restored glucose metabolism might involve in the activation of brain-derived neurotrophic factor (BDNF)/tyrosine Kinase receptor B (TrkB)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway by LA treatment.

5.
Redox Biol ; 21: 101090, 2019 02.
Article in English | MEDLINE | ID: mdl-30593976

ABSTRACT

Brain iron accumulation is common in patients with Parkinson's disease (PD). Iron chelators have been investigated for their ability to prevent neurodegenerative diseases with features of iron overload. Given the non-trivial side effects of classical iron chelators, lactoferrin (Lf), a multifunctional iron-binding globular glycoprotein, was screened to identify novel neuroprotective pathways against dopaminergic neuronal impairment. We found that Lf substantially ameliorated PD-like motor dysfunction in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We further showed that Lf could alleviate MPTP-triggered apoptosis of DA neurons, neuroinflammation, and histological alterations. As expected, we also found that Lf suppressed MPTP-induced excessive iron accumulation and the upregulation of divalent metal transporter (DMT1) and transferrin receptor (TFR), which is the main intracellular iron regulation protein, and subsequently improved the activity of several antioxidant enzymes. We probed further and determined that the neuroprotection provided by Lf was involved in the upregulated levels of brain-derived neurotrophic factor (BDNF), hypoxia-inducible factor 1α (HIF-1α) and its downstream protein, accompanied by the activation of extracellular regulated protein kinases (ERK) and cAMP response element binding protein (CREB), as well as decreased phosphorylation of c-Jun N-terminal kinase (JNK) and mitogen activated protein kinase (MAPK)/P38 kinase in vitro and in vivo. Our findings suggest that Lf may be an alternative safe drug in ameliorating MPTP-induced brain abnormalities and movement disorder.


Subject(s)
Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Lactoferrin/pharmacology , Neuroprotective Agents/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Animals , Apoptosis/drug effects , Behavior, Animal/drug effects , Cell Line , Disease Models, Animal , Dopaminergic Neurons/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Iron/metabolism , MAP Kinase Signaling System , Male , Mice , Motor Disorders/drug therapy , Motor Disorders/etiology , Motor Disorders/metabolism , Motor Disorders/physiopathology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Neuroglia/drug effects , Neuroglia/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...