Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Acta Parasitol ; 69(1): 759-768, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416327

ABSTRACT

PURPOSE: The Government of Indonesia committed to eliminating schistosomiasis by 2025. Collaboratively snail control became one of the crucial strategies to ensure that the prevalence of Schistosoma japonicum in Oncomelania hupensis lindoensis reaches zero by the end of the program. This research investigated the spatial cluster change of S. japonicum transmission foci in Indonesia between 2017 and 2021. METHODS: We mapped the snail foci, collected the snails, and calculated the snail density. We also conducted laboratory tests to detect the existence of cercariae in the snails. Identified infected snails were used to calculate the infection rate (IR) or snails' prevalence of schistosome cercariae among freshwater snails. We then analysed the spatial cluster using the Getis-Ord Gi* statistic to identify the hot and cold spots. RESULTS: The 5-year schistosomiasis elimination program successfully declined 18.84% of the snail foci and reduced 40.37% of the infected snail foci. Local spatial autocorrelation of snail density and infection rate identified that in 2017 and 2021, the number of cold spots decreased by 53.91% and 0%, while hot spots increased by 2.63% and 56.1%. The presence of more hot spots suggests a rise in the number of foci with high snail density and infection rates. The implementation of snail control was not optimal, and the parasite transmission through domestic animals still existed, causing the spatial cluster of hot spots to change during this period. Most hotspots have been observed near settlements, primarily in cocoa plantations, developed and deserted rice fields, grassland, and bush wetlands. CONCLUSION: During the schistosomiasis elimination program, the number of hot spots increased while cold spots decreased, and there were notable changes in the geographical distribution of hot spots, indicating a shift in the clustering pattern of schistosomiasis cases. The findings become essential for policymakers, particularly in selecting priority areas for intervention. In the Discussion section, we demonstrated the selection process based on the existence of hot and cold spots. Furthermore, we proposed that enhancing cross-sector integration is crucial, particularly in connection with the management of S. japonicum transmission through domestic animals.


Subject(s)
Schistosoma japonicum , Schistosomiasis japonica , Snails , Animals , Indonesia/epidemiology , Snails/parasitology , Schistosomiasis japonica/transmission , Schistosomiasis japonica/epidemiology , Schistosomiasis japonica/prevention & control , Disease Eradication , Humans , Spatial Analysis
2.
PLoS Negl Trop Dis ; 14(6): e0008301, 2020 06.
Article in English | MEDLINE | ID: mdl-32479495

ABSTRACT

Achieving elimination of lymphatic filariasis (LF) as a public health problem requires a minimum of five effective rounds of mass drug administration (MDA) and demonstrating low prevalence in subsequent assessments. The first assessments recommended by the World Health Organization (WHO) are sentinel and spot-check sites-referred to as pre-transmission assessment surveys (pre-TAS)-in each implementation unit after MDA. If pre-TAS shows that prevalence in each site has been lowered to less than 1% microfilaremia or less than 2% antigenemia, the implementation unit conducts a TAS to determine whether MDA can be stopped. Failure to pass pre-TAS means that further rounds of MDA are required. This study aims to understand factors influencing pre-TAS results using existing programmatic data from 554 implementation units, of which 74 (13%) failed, in 13 countries. Secondary data analysis was completed using existing data from Bangladesh, Benin, Burkina Faso, Cameroon, Ghana, Haiti, Indonesia, Mali, Nepal, Niger, Sierra Leone, Tanzania, and Uganda. Additional covariate data were obtained from spatial raster data sets. Bivariate analysis and multilinear regression were performed to establish potential relationships between variables and the pre-TAS result. Higher baseline prevalence and lower elevation were significant in the regression model. Variables statistically significantly associated with failure (p-value ≤0.05) in the bivariate analyses included baseline prevalence at or above 5% or 10%, use of Filariasis Test Strips (FTS), primary vector of Culex, treatment with diethylcarbamazine-albendazole, higher elevation, higher population density, higher enhanced vegetation index (EVI), higher annual rainfall, and 6 or more rounds of MDA. This paper reports for the first time factors associated with pre-TAS results from a multi-country analysis. This information can help countries more effectively forecast program activities, such as the potential need for more rounds of MDA, and prioritize resources to ensure adequate coverage of all persons in areas at highest risk of failing pre-TAS.


Subject(s)
Disease Transmission, Infectious/prevention & control , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/prevention & control , Filaricides/administration & dosage , Albendazole/administration & dosage , Diethylcarbamazine/administration & dosage , Elephantiasis, Filarial/drug therapy , Humans , Internationality , Mass Drug Administration/methods , Program Evaluation , Public Health , Risk Factors
3.
Korean J Parasitol ; 58(6): 627-634, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33412766

ABSTRACT

Belitung district in Bangka-Belitung Province, Indonesia with a population of 0.27 million is endemic for Brugia malayi and 5 rounds of mass drug administration (MDA) were completed by 2010. Based on the results of 3 transmission assessment surveys (TAS), the district is declared as achieving elimination of lymphatic filariasis (LF) in 2017. The findings of an independent survey conducted by the National Institute of Health Research and Development (NIHRD) in the same year showed microfilaria (Mf) prevalence of 1.3% in this district. In 2019, NIHRD conducted microfilaria survey in 2 villages in Belitung district. Screening of 311 and 360 individuals in Lasar and Suak Gual villages showed Mf prevalence of 5.1% and 2.2% with mean Mf density of 120 and 354 mf/ml in the respective villages. Mf prevalence was significantly higher among farmers and fishermen compared to others and the gender specific difference was not significant. The results of a questionnaire based interview showed that 62.4% of the respondents reported to have participated in MDA in Lasar while it was 57.7% in Suak Gual village. About 42% of the Mf positive cases did not participate in MDA. Environmental surveys identified many swampy areas supporting the breeding of Mansonia vector species. Persistence of infection is evident and in the event of successful TAS3 it is necessary to monitor the situation and plan for focal MDA. Appropriate surveillance strategies including xenomonitoring in post-MDA situations need to be developed to prevent resurgence of infection. Possible role of animal reservoirs is discussed.


Subject(s)
Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/prevention & control , Endemic Diseases/prevention & control , Endemic Diseases/statistics & numerical data , Mass Drug Administration/methods , Adult , Animals , Brugia malayi , Elephantiasis, Filarial/diagnosis , Elephantiasis, Filarial/parasitology , Female , Humans , Indonesia/epidemiology , Male , Prevalence , Recurrence , Secondary Prevention
SELECTION OF CITATIONS
SEARCH DETAIL
...