Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(31): E6361-E6370, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716924

ABSTRACT

Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.


Subject(s)
Cytoskeleton/genetics , Evolution, Molecular , Genome, Plant/genetics , Porphyra/cytology , Porphyra/genetics , Actins/genetics , Calcium Signaling/genetics , Cell Cycle/genetics , Cell Wall/genetics , Cell Wall/metabolism , Chromatin/genetics , Kinesins/genetics , Phylogeny
2.
Proc Natl Acad Sci U S A ; 113(35): 9882-7, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27535936

ABSTRACT

Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.


Subject(s)
Biotechnology/methods , Genome, Fungal/genetics , Genomics/methods , Yeasts/genetics , Ascomycota/classification , Ascomycota/genetics , Ascomycota/metabolism , Evolution, Molecular , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genetic Code/genetics , Metabolic Networks and Pathways/genetics , Phylogeny , Species Specificity , Yeasts/classification , Yeasts/metabolism
3.
Proc Natl Acad Sci U S A ; 112(11): 3451-6, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25733908

ABSTRACT

Some of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely related poplar leaf pathogen, M. populicola. A secondary metabolite cluster unique to M. populorum is fully activated following induction by poplar wood and leaves. In addition, genes encoding hemicellulose-degrading enzymes, peptidases, and metabolite transporters were more abundant and were up-regulated in M. populorum growing on poplar wood-chip medium compared with M. populicola. The secondary gene cluster and several of the carbohydrate degradation genes have the signature of horizontal transfer from ascomycete fungi associated with wood decay and from prokaryotes. Acquisition and maintenance of the gene battery necessary for growth in woody tissues and gene dosage resulting in gene expression reconfiguration appear to be responsible for the adaptation of M. populorum to infect, colonize, and cause mortality on poplar woody stems.


Subject(s)
Adaptation, Physiological/genetics , Ascomycota/growth & development , Ascomycota/genetics , Gene Dosage , Gene Transfer, Horizontal , Trees/microbiology , Wood/microbiology , Ascomycota/pathogenicity , Base Sequence , Colony Count, Microbial , Gene Expression Regulation, Fungal , Genetic Speciation , Genome, Fungal/genetics , Host-Pathogen Interactions/genetics , Indole Alkaloids/metabolism , Molecular Sequence Data , Nitrogen/metabolism , Phylogeny , Populus/microbiology , Proteolysis , Synteny/genetics , Time Factors
4.
PLoS One ; 7(9): e44112, 2012.
Article in English | MEDLINE | ID: mdl-23049744

ABSTRACT

Although yield trials for switchgrass (Panicum virgatum L.), a potentially high value biofuel feedstock crop, are currently underway throughout North America, the genetic tools for crop improvement in this species are still in the early stages of development. Identification of high-density molecular markers, such as single nucleotide polymorphisms (SNPs), that are amenable to high-throughput genotyping approaches, is the first step in a quantitative genetics study of this model biofuel crop species. We generated and sequenced expressed sequence tag (EST) libraries from thirteen diverse switchgrass cultivars representing both upland and lowland ecotypes, as well as tetraploid and octoploid genomes. We followed this with reduced genomic library preparation and massively parallel sequencing of the same samples using the Illumina Genome Analyzer technology platform. EST libraries were used to generate unigene clusters and establish a gene-space reference sequence, thus providing a framework for assembly of the short sequence reads. SNPs were identified utilizing these scaffolds. We used a custom software program for alignment and SNP detection and identified over 149,000 SNPs across the 13 short-read sequencing libraries (SRSLs). Approximately 25,000 additional SNPs were identified from the entire EST collection available for the species. This sequencing effort generated data that are suitable for marker development and for estimation of population genetic parameters, such as nucleotide diversity and linkage disequilibrium. Based on these data, we assessed the feasibility of genome wide association mapping and genomic selection applications in switchgrass. Overall, the SNP markers discovered in this study will help facilitate quantitative genetics experiments and greatly enhance breeding efforts that target improvement of key biofuel traits and development of new switchgrass cultivars.


Subject(s)
Expressed Sequence Tags , Genome, Plant , Genomic Library , Panicum/genetics , Polymorphism, Single Nucleotide , Biofuels , Chromosome Mapping , Ecotype , Genetic Markers , Genome-Wide Association Study , Genotype , High-Throughput Nucleotide Sequencing , North America , Panicum/classification , Phylogeography , Ploidies
5.
Proc Natl Acad Sci U S A ; 108(32): 13212-7, 2011 Aug 09.
Article in English | MEDLINE | ID: mdl-21788494

ABSTRACT

Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.


Subject(s)
Biofuels/microbiology , Fermentation/genetics , Fungi/genetics , Genomics/methods , Xylose/metabolism , Candida/genetics , Conserved Sequence/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Genotype , Phenotype , Phylogeny , Species Specificity
6.
Proc Natl Acad Sci U S A ; 108(22): 9166-71, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21536894

ABSTRACT

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.


Subject(s)
Basidiomycota/genetics , Fungi/genetics , Triticum/microbiology , Gene Expression Profiling , Genes, Fungal , Genome , Genome, Fungal , Models, Genetic , Nitrates/chemistry , Oligonucleotide Array Sequence Analysis , Phylogeny , Plant Diseases/microbiology , Plant Leaves/microbiology , Sequence Analysis, DNA , Sulfates/chemistry
7.
Fungal Genet Biol ; 45(5): 628-37, 2008 May.
Article in English | MEDLINE | ID: mdl-18226935

ABSTRACT

The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of 35 additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.


Subject(s)
Ascomycota/genetics , DNA, Fungal/genetics , DNA, Mitochondrial/genetics , Genome, Mitochondrial , DNA, Circular/genetics , DNA, Fungal/chemistry , DNA, Mitochondrial/chemistry , Fungal Proteins/genetics , Genes, rRNA , Genetic Variation , Molecular Sequence Data , Phylogeny , RNA, Transfer/genetics , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Sequence Homology , Triticum/microbiology
8.
Nat Biotechnol ; 24(10): 1263-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16998472

ABSTRACT

Enhanced biological phosphorus removal (EBPR) is one of the best-studied microbially mediated industrial processes because of its ecological and economic relevance. Despite this, it is not well understood at the metabolic level. Here we present a metagenomic analysis of two lab-scale EBPR sludges dominated by the uncultured bacterium, "Candidatus Accumulibacter phosphatis." The analysis sheds light on several controversies in EBPR metabolic models and provides hypotheses explaining the dominance of A. phosphatis in this habitat, its lifestyle outside EBPR and probable cultivation requirements. Comparison of the same species from different EBPR sludges highlights recent evolutionary dynamics in the A. phosphatis genome that could be linked to mechanisms for environmental adaptation. In spite of an apparent lack of phylogenetic overlap in the flanking communities of the two sludges studied, common functional themes were found, at least one of them complementary to the inferred metabolism of the dominant organism. The present study provides a much needed blueprint for a systems-level understanding of EBPR and illustrates that metagenomics enables detailed, often novel, insights into even well-studied biological systems.


Subject(s)
Betaproteobacteria/genetics , Betaproteobacteria/metabolism , Genome, Bacterial , Phosphorus/metabolism , Sewage/microbiology , Adaptation, Biological , Phosphorus/isolation & purification , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...