Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Water Res ; 223: 119009, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36037713

ABSTRACT

Although multiple experimental studies have proven the use of free synthetic DNA as tracers in hydrological systems, their quantitative fate and transport, especially through the vadose zone, is still not well understood. Here we simulate the water flow and breakthrough of deuterium (D) and one free synthetic DNA tracer from a 10-day experiment conducted in a transient variably saturated 1m3 10° sloped lysimeter using the HYDRUS-2D software package. Recovery and breakthrough flux of D (97.78%) and the DNA tracer (1.05%) were captured well with the advection-dispersion equation (R2 = 0.949, NSE = 0.937) and the Schijven and Simunek two-site kinetic sorption model recommended for virus transport modeling (R2 = 0.824, NSE = 0.823), respectively. The degradation of the DNA tracer was very slow (estimated to be 10% in 10 days), because the "loamy sand" porous media in our lysimeter was freshly crushed basaltic tephra (i.e., crushed rocks) and the microbes and DNase that could potentially degrade DNA in regular soils were rare in our "loamy sand". The timing of the concentration peaks and the HYDRUS-2D simulated temporal and spatial distribution of DNA in the lysimeter both revealed the role of the solid-water-air contact lines in mobilizing and carrying DNA tracer under the experimental variably saturated transient flow condition. The free DNA was nearly non-selectively transported through the porous media, and showed a slightly early breakthrough, possibly due to a slight effect of anion exclusion or size exclusion. Our results indicate that free DNA have the potential to trace vadose zone water flow and solute/contaminant transport, and to serve as surrogates to trace viral pathogen pollution in soil-water systems. To our knowledge, this study is the first to simulate transport mechanisms of free synthetic DNA tracers through real soil textured porous media under variably saturated transient flow condition.


Subject(s)
Groundwater , Water Movements , Deoxyribonucleases , Deuterium , Models, Theoretical , Sand , Soil , Water
2.
Sci Data ; 7(1): 306, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934240

ABSTRACT

Land-atmosphere interactions at different temporal and spatial scales are important for our understanding of the Earth system and its modeling. The Landscape Evolution Observatory (LEO) at Biosphere 2, managed by the University of Arizona, hosts three nearly identical artificial bare-soil hillslopes with dimensions of 11 × 30 m2 (1 m depth) in a controlled and highly monitored environment within three large greenhouses. These facilities provide a unique opportunity to explore these interactions. The dataset presented here is a subset of the measurements in each LEO's hillslopes, from 1 July 2015 to 30 June 2019 every 15 minutes, consisting of temperature, water content and heat flux of the soil (at 5 cm depth) for 12 co-located points; temperature, relative humidity and wind speed above ground at 5 locations and 5 different heights ranging from 0.25 m to 9-10 m; 3D wind at 1 location; the four components of radiation at 2 locations; spatially aggregated precipitation rates, total subsurface discharge, and relative water storage; and the measurements from a weather station outside the greenhouses.

SELECTION OF CITATIONS
SEARCH DETAIL