Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916290

ABSTRACT

In the present era, the fixation of atmospheric CO2 is of significant importance and plays a crucial role in maintaining the balance of carbon and energy flow within ecosystems. Generally, CO2 fixation is carried out by autotrophic organisms; however, the scientific community has paid substantial attention to execute this process in laboratory. In this report, we synthesized two carbonato-bridged trinuclear copper(II) complexes, [Cu3(L1)3(µ3-CO3)](ClO4)3 (1) and [Cu3(L2)3(µ3-CO3)](ClO4)3 (2) via atmospheric fixation of CO2 starting with Cu(ClO4)2·6H2O and easily accessible pyridine/pyrazine-based N4 donor Schiff base ligands L1 and L2, respectively. Under very similar reaction conditions, the ligand framework embedded with the phenolate moiety (HL3) fails to do so because of the reduction of the Lewis acidity of the metal center, inhibiting the formation of a reactive hydroxide bound copper(II) species, which is required for the fixation of atmospheric CO2. X-ray crystal structures display that carbonate-oxygen atoms bridge three copper(II) centers in µ3syn-anti disposition in 1 and 2, whereas [Cu(HL3)(ClO4)] (3) is a mononuclear complex. Interestingly, we also isolated an important intermediate of atmospheric CO2 fixation and structurally characterized it as an anti-anti µ2 carbonato-bridged dinuclear copper(II) complex, [Cu2(L2)2(µ2-CO3)](ClO4)2·MeOH (2-I), providing an in-depth understanding of CO2 fixation in these systems. Variable temperature magnetic susceptibility measurement suggests ferromagnetic interactions between the metal centers in both 1 and 2, and the results have been further supported by DFT calculations. The catalytic efficiency of our synthesized complexes 1-3 was checked by means of catechol oxidase and phenoxazinone synthase-like activities. While complexes 1 and 2 showed oxidase-like activity for aerobic oxidation of o-aminophenol and 3,5-di-tert-butylcatechol, complex 3 was found to be feebly active. ESI mass spectrometry revealed that the oxidation reaction proceeds through the formation of complex-substrate intermediations and was further substantiated by DFT calculations. Moreover, active catalysts 1 and 2 were effectively utilized for the base-free oxidation of benzylic alcohols in the presence of air as a green and sustainable oxidant and catalytic amount of TEMPO in acetonitrile. Various substituted benzylic alcohols smoothly converted to their corresponding aldehydes under very mild conditions and ambient temperature. The present catalytic protocol showcases its environmental sustainability by producing minimal waste.

2.
Dalton Trans ; 53(6): 2501-2511, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38205580

ABSTRACT

In the last two decades, efforts have been devoted to obtaining insight into the magnetic interactions between CuII and LnIII utilizing experimental and theoretical means. Experimentally, it has been observed that the exchange coupling (J) in CuII-LnIII systems is often found to be ferromagnetic for ≥4f7 metal ions. However, exchange interactions at sub-Kelvin temperatures between CuII and the anisotropic/isotropic LnIII ions are not often explored. In this report, we have synthesized a series of heterobimetallic [CuLn(HL)(µ-piv)(piv)2] complexes (LnIII = Gd (1), Tb (2), Dy (3) and Er (4)) from a new compartmental Schiff base ligand, N,N'-bis(3-methoxy-5-methylsalicylidene)-1,3-diamino-2-propanol (H3L). X-ray crystallographic analysis reveals that all four complexes are isostructural and isomorphous. Magnetic susceptibility measurements reveal a ferromagnetic coupling between the CuII ion and its respective LnIII ion for all the complexes, as often observed. Moreover, µ-SQUID studies, at sub-Kelvin temperatures, show S-shaped hysteresis loops indicating the presence of antiferromagnetic coupling in complexes 1-3. The antiferromagnetic interaction is explained by considering the shortest Cu⋯Cu distance in the crystal structure. The nearly closed loops for 1-3 highlight their fast relaxation characteristics, while the opened loops for 4 might arise from intermolecular ordering. CASSCF calculations allow the quantitative assessment of the interactions, which are further supported by BS-DFT calculations.

3.
RSC Adv ; 13(17): 11311-11323, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37057262

ABSTRACT

Two new doubly µ 1,1-N3 bridged (1 and 3) and six new doubly µ 1,1-NCO bridged NiII complexes (2, 4-8) with six different N3O donor Schiff base ligands have been synthesized and magneto-structurally characterized. All these neutral complex molecules are isostructural and constitute edge sharing bioctahedral structures. Magnetic studies revealed that all these complexes exhibit ferromagnetic interaction through bridging pseudohalides with ferromagnetic coupling constant J being significantly higher for azide-bridged complexes than that of the cyanate analogues. This is consistent with the literature reported data and also the presence of polarizable π systems and two different N and O donor atoms in cyanate ion, rendering it a poor magnetic coupler in comparison to azide analogues. Although, the magneto-structurally characterized doubly µ 1,1-N3 bridged NiII complexes are abundant, only few such complexes with µ 1,1-bridging NCO- ions are reported in the literature. Remarkably, addition of these six new examples in this ever-growing series of doubly µ 1,1-NCO bridged systems gives us an opportunity to analyse the precise magneto-structural correlation in this system, showing a general trend in which the J value increases with an increase in bridging angles. Therefore, the high degree of structural and magnetic resemblances by inclusion of six new examples in this series is the major achievement of the present work. An elaborate DFT study was performed resulting in magneto-structural correlation showing that nature and value of the J-parameter is defined not only by Ni-Nb-Ni bond angles, but an important role is also played by the Ni1-Ni2-Nb-Xt dihedral angle (Nb and Xt are bridging N and terminal N or O atom of bridging ligands, respectively).

4.
Dalton Trans ; 52(5): 1241-1256, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36606746

ABSTRACT

A series of LnIII complexes of general formula [Ln(H2L1)2(NO3)2(H2O)](NO3) (1-5) [Ln = Dy (1), Tb (2) Ho (3), Er (4), and Yb (5)] and an analogous DyIII complex with ligand H2L2, [Dy(H2L2)2(NO3)3(H2O)](NO3) (6), where H2L1 and H2L2 stand for (E)-2-[(2-hydroxyphenyl)iminomethyl]-6-methoxy-4-methylphenol and (E)-2-[(2-hydroxy-5-methylphenyl)iminomethyl]-6-methoxy-4-methylphenol, respectively, have been synthesized and magneto-structurally characterized. All these complexes are isostructural and isomorphous, in which the zwitterionic form of the ligands predominantly coordinate the metal centers. The magnetic study revealed that complex 3 displays negligible SMM behaviour, while 1 and 6 are zero field SMMs, the performance of which can largely be improved in the presence of an applied dc field by lowering under barrier relaxation processes, and finally 2, 4, and 5 are field-induced SMMs. The most remarkable observation in the present study is the dramatically-enhanced SMM performance in 6 compared to 1, achieved by only a remote methyl substitution at the ligand framework to increase the intermolecular separation. Although SINGLE_ANISO ab initio calculations for 1 and 6 are very similar, the POLY_ANISO module revealed weak dipolar interactions in both the compounds but significant antiferromagnetic interaction in 1, thereby justifying the experimental fact. The present work discloses that even a small substitution such as a methyl group can adequately increase the intermolecular separation, leading to several-fold enhanced effective energy barrier.

5.
Dalton Trans ; 51(40): 15555-15570, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36168977

ABSTRACT

Two rhodamine and azo based chemosensors (HL1 = (3',6'-bis(ethylamino)-2-((2-hydroxy-3-methoxy-5-(phenyldiazenyl)benzylidene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one) and HL2 = (3',6'-bis(ethylamino)-2-(((2-hydroxy-3-methoxy-5-(p-tolyldiazenyl)benzylidene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one) have been synthesized for colorimetric and fluorometric detection of three trivalent metal ions, Al3+, Cr3+ and Fe3+. The chemosensors have been thoroughly characterized by different spectroscopic techniques and X-ray crystallography. They are non-fluorescent due to the presence of a spirolactam ring. The trivalent metal ions initiate an opening of the spirolactam ring when excited at 490 nm in Britton-Robinson buffer solution (H2O/MeOH 1 : 9 v/v; pH 7.4). The opening of the spirolactam ring increases conjugation within the probe, which is supported by an intense fluorescent pinkish-yellow colouration and an enhancement of the fluorescence intensity of the chemosensors by ∼400 times in the presence of Al3+ and Cr3+ ions and by ∼100 times in the presence of Fe3+ ions. Such a type of enormous fluorescence enhancement is rarely observed in other chemosensors for the detection of trivalent metal ions. A 2 : 1 binding stoichiometry of the probes with the respective ions has been confirmed by Job's plot analysis. Elucidation of the crystal structures of the Al3+ bound chemosensors (1 and 4) also justifies the 2 : 1 binding stoichiometry and the presence of an open spirolactam ring within the chemosensor framework. The limit of detection (LOD) values for both the chemosensors towards the respective metal ions are in the order of ∼10-9 M which supports their application in the biological field. The biocompatibility of the ligands has been studied with the help of the MTT assay. The results show that no significant toxicity was observed up to 100 µM of chemosensor concentration. The capability of our synthesized chemosensors to detect intracellular Al3+, Cr3+ and Fe3+ ions in the cervical cancer cell line HeLa was evaluated with the aid of fluorescence imaging.


Subject(s)
Fluorescent Dyes , Optical Imaging , Aluminum/analysis , Fluorescent Dyes/chemistry , Ions/analysis , Metals , Rhodamines/chemistry , Spectrometry, Fluorescence
6.
Dalton Trans ; 50(42): 15233-15247, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34623364

ABSTRACT

This paper describes the synthesis, and structural and spectroscopic characterizations of two doubly bridged dicopper(II) complexes, [Cu2(µ-H2L)(µ-OMe)](ClO4)4·2H2O (1) and [Cu2(µ-L)(µ-OH)](ClO4)2 (2), with a binucleating ligand (HL) derived from the Schiff base condensation of DFMP and N,N-dimethyldipropylenetriamine, and their biomimetic catalytic activities were related to CAO and phenoxazinone synthase using 3,5-di-tert-butylcatechol and o-aminophenol (OAPH), respectively, as model substrates. Structural studies reveal that the major differences in these structures appear to be from the distinct roles of the tertiary amine groups of the ligands, which are protonated in 1, whereas it coordinates the metal centers in 2. Magnetic studies disclose that two copper(II) centers are strongly antiferromagnetically coupled with slightly different J values, which is further interpreted and discussed. They exhibited very different biomimetic catalytic activities; whereas 2 is an efficient catalyst, complex 1 showed somewhat lower substrate oxidation. The higher reactivity in 2 is rationalized by the strong involvement of the tertiary amine group of the Schiff base ligand, where the substrate oxidation is favored because of the transfer of protons from the substrate to the tertiary amine group, showing the importance of the functional groups in proximity to the bimetallic active site. Emphasis was also given to probing the binding mode of the substrate using an electronically deficient tetrabromomocatechol (Br4CatH2) and the isolated compound [Cu6(µ-HL)2(µ-OH)2(Br4Cat)4](NO3)2·4H2O (3) which suggests that monodentate asymmetric binding of 3,5-di-tert-butylcatechol and OAPH occurs during the course of the catalytic reaction.

7.
Dalton Trans ; 49(40): 14216-14230, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33025999

ABSTRACT

This paper describes the synthesis and structural characterization of four new manganese(iii) complexes (1-4) derived from N3O donor Schiff base ligands and their biomimetic catalytic activities related to catechol oxidase and phenoxazinone synthase. X-ray crystallography reveals that the Schiff bases coordinate the metal centre in a tridentate fashion, leaving the pendant tertiary amine nitrogen atom either protonated or free to balance the charge of the system, and these pendant triamines participate in strong hydrogen bonding interactions in the solid state. The hydrogen bonding ability of the pendant triamines at the second coordination sphere plays a crucial role in the substrate recognition and the stability of the complex-substrate intermediates. The effect of substitution at the phenolate ring towards the redox potential of the metal centre and the catalytic activity of these complexes has been observed. Detailed kinetic studies further disclose the deuterium kinetic isotope effect in which the transfer of the proton along the hydrogen bond from the substrates to the pendant triamine group at the secondary coordination sphere occurs at the key step in the catalytic reaction. The present reactivity nicely resembles the biochemical reactivities in the natural system in which a concerted electron and proton transfer to different species is usually observed. Remarkably, although some sort of influence of the secondary coordination sphere on catalytic activity has been reported mimicking the function of these metalloenzymes, such a direct participation of the secondary coordination sphere, particularly in modelling phenoxazinone synthase, has not been observed to date.


Subject(s)
Biomimetic Materials/chemistry , Catechol Oxidase/metabolism , Coordination Complexes/chemistry , Manganese/chemistry , Oxidoreductases/metabolism , Catalysis , Coordination Complexes/metabolism , Crystallography, X-Ray , Hydrogen/chemistry , Hydrogen Bonding , Kinetics , Ligands , Models, Molecular , Molecular Structure , Oxidation-Reduction , Phenols/chemistry , Schiff Bases/chemistry , Structure-Activity Relationship
8.
Dalton Trans ; 49(40): 14169-14179, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33026012

ABSTRACT

Six dimetallic lanthanide complexes, [Ln2(L')(acac)4] (1Dy-3Gd) (Ln = Dy (1Dy), Tb (2Tb) and Gd (3Gd)) and [Ln2(L')(tfac)4] (4Dy-6Gd) (Ln = Dy (4Dy), Tb (5Tb) and Gd (6Gd)) (H2L' = 1,9-dichloro-3,7,11,15-tetraaza-1,9(1,3)-dibenzenacyclohexadecaphane-2,10-diene-1,9-diol), have been synthesized by the reaction of lanthanide nitrates with the HL ligand in the presence of acetylacetonate (acac) (or trifluoroacetylacetonate (tfac) and triethylamine (HL = 4-chloro-2,6-bis(-((3-((3-(dimethylamino)propyl)amino)propyl)imino)methyl)phenol). Ln-Assisted modification of the Schiff base HL occurred and led to the formation of a new macrocyclic ligand (H2L'). X-ray crystallographic analysis revealed that the LnIII ions of complexes 1Dy-6Gd are all eight-coordinated in a square antiprismatic geometry with D4d local symmetry. Magnetic measurements of these complexes revealed that 1Dy and 4Dy show single-molecule magnet behaviour with energy barriers of 66.7 and 79.0 K, respectively, under a zero direct magnetic field. The orientations of the magnetic axes and crystal field parameters were obtained from theoretical calculations and an electrostatic model. The magneto-structural correlations of SMMs 1Dy and 4Dy are further discussed in detail.

9.
J Inorg Biochem ; 176: 77-89, 2017 11.
Article in English | MEDLINE | ID: mdl-28865745

ABSTRACT

The present report describes the synthesis and structural characterizations of six new manganese(III) complexes with redox-active tetrachlorocatecholate ligand in the presence of different ancillary ligands (pyridines and imidazole). X-ray crystal structure analysis reveals that the geometry of manganese(III) centres in 1 and 2 is essentially square pyramidal, while it is discrete octahedron in compounds 3-6. These preferential structural diversities in these systems have been critically analysed by theoretical calculations. Remarkably, the characterization of both π⋯π stacking interactions and MnMn bonds in the supramolecular dimeric aggregates in the solid state in 1 and 2 by means of the Bader's theory of "atoms in molecules" (AIM) is quite interesting as that nicely corroborates the experimental fact. All the complexes are active toward the phenoxazinone synthase like activity and the detailed kinetic analysis was performed to get better insight into their catalytic efficiency. Electrochemical property of these complexes as well as different donor property of the ancillary ligands clearly establish that the ease of reduction of the metal centre i.e., the catalytic ability is favoured when the metal centre is bonded to the electron deficient pyridyl systems. EPR spectroscopy and theoretical study are further helpful to get insight into origin of the catalytic activity in these compounds. The present report overall highlights that tuning of the geometry and catalytic activity of manganese(III) complexes with tetrachlorocatecholate ligand can be attained by the introduction of different substitutions in ancillary pyridine ligands.


Subject(s)
Biomimetic Materials/chemistry , Catechols/chemistry , Coordination Complexes/chemistry , Manganese/chemistry , Catalysis , Crystallography, X-Ray , Structure-Activity Relationship
10.
Inorg Chem ; 55(17): 8331-40, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27557848

ABSTRACT

In this article, the synthesis and X-ray crystal structures of two cis/trans isomers of valence tautomeric (VT) cobalt dioxolene compounds are reported. The cis isomer (1) was isolated from the polar protic methanol solvent as a kinetic product, whereas the less polar nonprotic solvent acetone yielded the trans isomer (2). It should be noted that, although some coordination polymers involving cobalt bis(dioxolene) with the cis disposition are known for bridging ancillary ligands, such an arrangement is unprecedented for mononuclear compounds. A careful study of intermocular interactions revealed that the methanol solvent does not have much influence on the crystal growth in 1, whereas acetone forms strong halogen-bonding interactions that are crucial in the solid-state architecture of 2. This behavior can likely be used in crystal engineering to design new organic-inorganic hybrid materials. The energy difference between the two isomers was examined using DFT calculations, confirming that the trans form is in the thermodynamic state whereas the cis isomer is a kinetic product that can be converted into the trans isomer with time. Finally, both isomers exhibit solvent loss at elevated temperatures that is accompanied by a change in magnetic properties, associated with an irreversible valence tautomerism. Our results highlight the crucial role of the solvents for the isolation of cis/trans isomers in cobalt dioxolene chemistry, as well as the distinguishing effects of intermolecular forces and the solid-state packing on VT behavior.

11.
J Inorg Biochem ; 159: 96-106, 2016 06.
Article in English | MEDLINE | ID: mdl-26970727

ABSTRACT

The present report describes synthesis, characterization, crystal structures and catecholase activity of a series of five new manganese(III) complexes (1-5) derived from redox-noninnocent tetrabromocatecholate ligand in combination with different substituted pyridines. X-ray crystallography reveals that the geometry of manganese(III) centers in 1 and 2 is square pyramidal and they are pseudo-dimeric in the solid state resulting from the weak bonding of manganese(III) with a catecholate oxygen atom from the adjacent manganese(III) unit together with other weak interactions like hydrogen bonding and π⋯π stacking interactions. On the other hand, complexes 3-5 are discrete octahedral structures. All the complexes exhibit strong catecholase activity and their diverse catalytic activity can nicely be explained by the nature of substitution at pyridine ring - better electron donor inhibits the reduction of the metal center thereby lowering catecholase activity and vice versa (1 and 2 vs. 3-5). Besides the donor property of ancillary ligands, the structural distortion has also significant role in the biomimetic catalytic activity (1 vs. 2).


Subject(s)
Biomimetic Materials/chemistry , Catechol Oxidase/chemistry , Catechols/chemistry , Hydrocarbons, Brominated/chemistry , Manganese/chemistry , Pyridines/chemistry , Crystallography, X-Ray
12.
Dalton Trans ; 44(20): 9426-38, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25915730

ABSTRACT

In the present work, two compartmental ligands H2L(1) and H2L(2) were in situ generated during the syntheses of new trinuclear complexes, [Cu2Ni(L(1))(2,2'-bpy)2(NO3)2][ClO4]2 (), [Cu3(L(2))(NO3)2][ClO4]2 (), and [Cu3(L(2))(NCS)2(NO3)](+) that co-crystallize in with a [Cu6(L(2))2Na2(NO3)6(NCS)4] unit to give the final molecular formula [Cu6(L(2))2Na2(NO3)6(NCS)4][Cu3(L(2))(NCS)2(NO3)]2(NO3)2·5H2O (). The magnetic property studies of revealed weak Cu(II)-Cu(II) ferromagnetic interactions in compound (JCu-Cu/kB = +1.4(1) K) and (JCu-Cu/kB = +1.6) while in intranuclear Cu(II)-Ni(II)-Cu(II) compound , the magnetic coupling between two Cu(II) ions is switched off by the diamagnetic square planar Ni(II) bridge. The catalytic epoxidation of two olefins, namely styrene and cyclooctene, by tert-BuOOH (TBHP) was also explored in the presence of a catalytic amount of , or in MeCN. For styrene oxidation, exhibited ∼57% styrene epoxide selectively (conversion ∼37%) with a TON of about 925 along with benzaldehyde (∼43%), whereas exhibited conversion up to ∼63% (TON ∼ 1575) with a good selectivity towards epoxide (∼71%). For compound , this conversion is more important (TON ∼ 8108) probably due to the presence of more active sites involved in the epoxidation. The concerted path was found to be operative for styrene oxidation while a radical path was suggested for the oxidation of cyclooctene.


Subject(s)
Copper/chemistry , Magnetic Phenomena , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Catalysis , Chemistry Techniques, Synthetic , Cyclooctanes/chemistry , Epoxy Compounds/chemistry , Ligands , Models, Molecular , Molecular Conformation , Oxidants/chemistry , Styrene/chemistry , tert-Butylhydroperoxide/chemistry
13.
Dalton Trans ; 43(21): 7760-70, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24699794

ABSTRACT

The present report describes the syntheses, characterizations, crystal structures and study of the phenoxazinone synthase activity of two peroxo-bridged dicobalt(III) complexes, [Co2(L(1))2(µ-O2)](ClO4)4·2CH3CN (1) and [Co2(L(2))2(µ-O2)](ClO4)4 (2), and three mononuclear cobalt(II) complexes, [Co(L(3))(CH3CN)](ClO4)2 (3), [Co(L(4))(H2O)](ClO4)2 (4) and [Co(L(5))(H2O)](ClO4)2 (5), derived from the pentadentate ligands L(1)-L(5), which are the 1 : 2 condensation products of triamines and 2-acetylpyridine or 2-pyridinecarboxaldehyde (6-methyl-2-pyridinecarboxaldehyde). X-ray crystallography reveals exclusive selectivity of the acyclic Schiff dibasic form of the ligands over the heterocyclic analogues, and this selectivity is found to be insensitive to the oxidation state of cobalt. Other first row transition metals have been characterized in either form of the ligands in their complexes but it is specific for cobalt established in the present study. The pronounced effect of the methyl substitutions is observed from their crystal structures; substitution at imine-C does not have any significant influence on the peroxo-bridging but substitution at sixth position of pyridyl ring prevents the formation of peroxo-bridging, and both the steric and electronic factors play vital roles on such chemical diversity. All the complexes show the phenoxazinone synthase mimicking activity and the comparative catalytic activity has been explored. Although electrochemical behaviors of all the complexes are very similar, their relative catalytic activity mimicking the function of phenoxazinone synthase arises from the electronic and steric factors of the methyl substitution.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Oxazines/chemical synthesis , Oxidoreductases/chemistry , Oxygen/chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Ligands , Models, Molecular , Oxidation-Reduction , Pyridines/chemical synthesis , Pyridines/chemistry
14.
Dalton Trans ; 43(14): 5443-52, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24522410

ABSTRACT

Two new azide bound cobalt(III) complexes, [Co(L(1))(N3)3] (fac-1) and [Co(L(2))(N3)3] (mer-2), where L(1) is bis(2-pyridylmethyl)amine and L(2) is (2-pyridylmethyl)(2-pyridylethyl)amine, derived from tridentate reduced Schiff-base ligands have been reported. Interestingly, a methylene bridge regulated preferential coordination mode of ligands is noticed in their crystal structures: it is found in a facial arrangement in fac-1 and has a meridional disposition in mer-2. Both complexes show phenoxazinone synthase-like activity and the role of the structural factor on the catalytic activity is also explored. Moreover, the easily reducible cobalt(III) center in mer-2 favors the oxidation of o-aminophenol. The ESI-MS positive spectra together with UV-vis spectroscopy clearly suggest the formation of a catalyst-substrate adduct by substitution of the coordinated azide ions in the catalytic cycle.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Aminophenols/chemistry , Azides/chemistry , Catalysis , Crystallography, X-Ray , Ligands , Oxidoreductases/chemistry , Spectrometry, Mass, Electrospray Ionization
15.
Dalton Trans ; 42(14): 5068-75, 2013 Apr 14.
Article in English | MEDLINE | ID: mdl-23396321

ABSTRACT

A bis(imido)-bridged dinuclear cobalt(III) complex, [Co2(amp)2(µ-imp)2Cl2]Cl2·2H2O () [amp = 2-aminomethylpyridine; imp = 2-iminomethylpyridine anion], was synthesized by the reaction of cobalt(II) chloride with 2-aminomethylpyridine in the presence of alkaline hydrogen peroxide at room temperature. X-ray crystallography reveals that both the metal centres in the molecule are related to each other through an inversion centre, and the geometry of each of the Co(III) ions is a distorted octahedral structure having a CoN5Cl coordination environment. The most important feature of the structure is the modification of half of the coordinated amines by the oxidative dehydrogenation process which involves double bridging in the complex cation. To the best of our knowledge, this is the first example of a bis(imido)-bridged dinuclear cobalt(III) complex derived from metal-assisted oxidative dehydrogenation of the coordinated primary amine ligand. Complex was found to be an excellent functional model for the phenoxazinone synthase, catalyzing the oxidative coupling of 2-aminophenol to the corresponding 2-aminophenoxazinone chromophore in dioxygen saturated methanol. The detailed kinetic investigations reveal that the phenoxazinone chromophore is produced via a potential complex-substrate intermediate.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Oxidoreductases/metabolism , Aminophenols/chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Electrochemical Techniques , Hydrogen Bonding , Kinetics , Molecular Conformation , Oxazines/chemistry , Oxidation-Reduction
16.
J Coord Chem ; 66(17): 3037-3044, 2013.
Article in English | MEDLINE | ID: mdl-24465064

ABSTRACT

Treatment of cobalt(II) perchlorate hexahydrate with 2 molar equiv. of 2-aminobenzenethiol (Habt) in acetonitrile afforded a tricationic tricobalt complex, [Co{Co(abt)3}2](ClO4)3·2CH3CN, by aerial oxidation. The molecular structure of the meso (ΔΛ) form of the complex was determined by X-ray crystallography. In the complex cation, the central Co is coordinated by six thiolate groups from two terminal fac(S)-[Co(abt)3] units in an octahedral geometry, forming a linear S-bridged tricobalt structure.

17.
Inorg Chem ; 51(22): 12350-9, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23134343

ABSTRACT

A new symmetrical tricyanide building block mer-[Fe(bbp)(CN)3](2-) [1; bbp = bis(2-benzimidazolyl)pyridine dianion] has been prepared and structurally and magnetically characterized. It forms a new low-spin meridionally capped {Fe(III)L(CN)3} fragment with the tridentate bbp ligand. The reaction of 1 with Ni(II) salts in the presence of various ancillary ligands affords several new cyanido-bridged complexes: a trinuclear complex {[Ni(ntb)(MeOH)]2[Fe(bbp)(CN)3][ClO4]2}·2MeOH (2), a tetranuclear compound {[Ni(tren)]2[Fe(bbp)(CN)3]2}·7MeOH (3), and a one-dimensional heterobimetallic system: {[Ni(dpd)2]2[Fe(bbp)(CN)3]2}·9MeOH·3H2O (4) [ntb = tris(2-benzimidazolylmethyl)amine, tren = tris(2-aminoethyl)amine, and dpd = 2,2-dimethyl-1,3-propanediamine]. The structural data shows that 2 is a linear complex in which a central Fe(III) ion links two adjacent Ni(II) ions via axial cyanides, while 3 is a molecular square that contains cyanido-bridged Ni(II) and Fe(III) ions at alternate corners. Complex 4 is a one-dimensional system that is composed of alternating cyanido-bridged Ni(II) and Fe(III) centers. Compounds 2-4 display extensive hydrogen bonding and moderately strong π-π stacking interactions in the solid state. Magnetic studies show that ferromagnetic exchange is operative within the Fe(III)LS(µ-CN)Ni(II) units of 2-4.

18.
Inorg Chem ; 50(22): 11437-45, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-22029264

ABSTRACT

We synthesized a new photoactive dinuclear zinc(II) complex by linking two zinc centers with a ligand containing an azobenzene chromophore and investigated the DNA cleavage activities of its trans and cis forms. The trans structure of the dinuclear zinc complex was determined by X-ray crystallography, where each zinc center is situated in an octahedral coordination environment comprised of three nitrogen atoms from the ligand and three oxygen atoms from two nitrate ions. The dinuclear zinc complex containing the azobenzene chromophore was photoisomerizable between the trans and cis forms. The binding affinities of the trans and cis complexes with calf thymus (CT)-DNA were similar. Although the DNA cleavage activity of the trans complex was negligible, the cis complex was able to cleave DNA. We attribute the efficient activity of the cis complex to the cooperation of the two closely located zinc centers and the inactivity of the trans complex to the two metal centers positioned far away from each other. The DNA cleavage activity of the cis complex exhibited a pH-dependent bell-shaped profile, which has been observed in the hydrolytic cleavage of DNA by zinc complexes. The DNA cleavage activity was not inhibited by a major groove binder, methyl green, but decreased significantly by a minor groove binder, 4',6-diamidino-2-phenylindole, indicating that the dinuclear zinc complex binds to the minor groove of DNA. The present work shows the importance of the cooperation of two zinc ions for hydrolytic DNA cleavage, which can be photoregulated by linking the two metal centers with a photoisomerizable spacer, such as an azobenzene chromophore.


Subject(s)
Azo Compounds/chemistry , Azo Compounds/pharmacology , DNA Cleavage/drug effects , Zinc/chemistry , Zinc/pharmacology , Animals , Azo Compounds/chemical synthesis , Cattle , Crystallography, X-Ray , DNA/metabolism , Isomerism , Models, Molecular , Photolysis
19.
Inorganica Chim Acta ; 362(4): 1348-1354, 2009 Mar 02.
Article in English | MEDLINE | ID: mdl-20161238

ABSTRACT

The syntheses, characterization, and single-crystal X-ray crystal structures are reported for four complexes of iron and cobalt with the pentadentate ligands, 2,6-diacetylpyridinebis(thiosemicarbazone) (H(2)L(1)) and 2,6-diacetylpyridinebis-(phenylthiosemicarbazone) (H(2)L(2)), including a cobalt dimer displaying a deviation from planarity which is unprecedented for this class of ligands and allows the ligand to occupy five positions of a pseudo-octahedral coordination sphere. This dimer reacts with KCN to produce a mononuclear complex of relevance to the active site of cobalt nitrile hydratase.

20.
Inorg Chem ; 44(26): 9714-22, 2005 Dec 26.
Article in English | MEDLINE | ID: mdl-16363840

ABSTRACT

The synthesis, X-ray data, and electronic structures of two manganese(III) 1D polymers ligated by tetrachlorocatechol, [Mn(2)(III)(H(2)L(1))(Cl(4)Cat)(4).2H(2)O](infinity) (1) and [Mn(2)(III)(H(2)L(2))(Cl(4)Cat)(4).2CH(3)CN.2H(2)O](infinity) (2), are reported. The electronic structures of the complexes have been determined by UV-vis-near-IR, IR, electron paramagnetic resonance (EPR), and magnetic susceptibility measurements. Both 1 and 2 are air stable in the solid state and in solution, unlike most of the previously reported o-quinone-chelated transition-metal complexes. Electronic spectroscopy exhibits a strong near-IR band near 1900 nm for both, suggesting the presence of a mixed-valence semiquinone-catecholate oxidation state of the catechol ligands, Mn(2)(III)(Cl(4)Cat)(2)(Cl(4)SQ)(2), together with the pure catecholate forms. The presence of this isomer was further supported by EPR and magnetic susceptibility measurements. The complexes undergo intramolecular electron transfer (valence tautomerism) upon an increase of the temperature involving the equilibrium Mn(2)(III)(Cl(4)Cat)(2)(Cl(4)SQ)(2) <==> Mn(2)(II)(Cl(4)SQ)(4). This phenomenon is reversible and is studied in solution using UV-vis-near-IR spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...