Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Ecol Evol ; 24(12): 686-93, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19712994

ABSTRACT

Climate change and biological invasions are key processes affecting global biodiversity, yet their effects have usually been considered separately. Here, we emphasise that global warming has enabled alien species to expand into regions in which they previously could not survive and reproduce. Based on a review of climate-mediated biological invasions of plants, invertebrates, fishes and birds, we discuss the ways in which climate change influences biological invasions. We emphasise the role of alien species in a more dynamic context of shifting species' ranges and changing communities. Under these circumstances, management practices regarding the occurrence of 'new' species could range from complete eradication to tolerance and even consideration of the 'new' species as an enrichment of local biodiversity and key elements to maintain ecosystem services.


Subject(s)
Adaptation, Physiological , Biodiversity , Global Warming , Animals , Plants , Risk Factors
2.
Integr Environ Assess Manag ; 5(1): 110-26, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19431296

ABSTRACT

Over the past century, the potential for aquatic species to expand their ranges in Europe has been enhanced both as a result of the construction of new canals and because of increased international trade. A complex network of inland waterways now connects some previously isolated catchments in southern (Caspian, Azov, Black, Mediterranean seas) and northern (Baltic, North, Wadden, White seas) Europe, and these waterways act as corridors for nonnative species invasions. We have developed a conceptual risk assessment model for invasive alien species introductions via European inland waterways, with specific protocols that focus on the development of environmental indicators within the socioeconomic context of the driving forces-pressures-state-impact-response framework. The risk assessment protocols and water quality indicators on alien species were tested for selected ecosystems within 3 main European invasion corridors, and these can be recommended for application as part of the Common Implementation Strategy of the European Commission Water Framework Directive, which aims to provide a holistic risk-based management of European river basins. The conceptual structure of the online Risk Assessment Toolkit for aquatic invasive alien species is provided and includes 3 main interlinked components: online risk assessment protocols, an early warning system, and an information transmitter for risk communication to end users.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Animals , Ecosystem , Europe , Fishes , Human Activities , International Cooperation , Plants , Rivers , Transportation , Water Movements
3.
Integr Environ Assess Manag ; 5(1): 5-10, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19132820

ABSTRACT

The European Union Water Framework Directive (WFD) requires a good chemical and ecological status of European surface waters by 2015. Integrated, risk-based management of river basins is presumed to be an appropriate approach to achieve that goal. The approach of focusing on distinct hazardous substances in surface waters together with investment in best available technology for treatment of industrial and domestic effluents was successful in significantly reducing excessive contamination of several European river basins. The use of the concept of chemical status in the WFD is based on this experience and focuses on chemicals for which there is a general agreement that they should be phased out. However, the chemical status, based primarily on a list of 33 priority substances and 8 priority hazardous substances, considers only a small portion of possible toxicants and does not address all causes of ecotoxicological stress in general. Recommendations for further development of this concept are 1) to focus on river basin-specific toxicants, 2) to regularly update priority lists with a focus on emerging toxicants, 3) to consider state-of-the-art mixture toxicity concepts and bioavailability to link chemical and ecological status, and 4) to add a short list of priority effects and to develop environmental quality standards for these effects. The ecological status reflected by ecological quality ratios is a leading principle of the WFD. While on the European scale the improvement of hydromorphological conditions and control of eutrophication are crucial to achieve a good ecological status, on a local and regional scale managers have to deal with multiple pressures. On this scale, toxic pollution may play an important role. Strategic research is necessary 1) to identify dominant pressures, 2) to predict multistressor effects, 3) to develop stressor- and type-specific metrics of pressures, and 4) to better understand the ecology of recovery. The concept of reference conditions to define the ecological status is hard to apply and tends to ignore the fact that ecosystems can be highly dynamic. A better understanding of ecosystem responses to changes as well as early warning systems and concepts sensitive to various stressors to discriminate disturbances from natural variation are required. Because ecosystems are closely interconnected, an integrated monitoring, diagnosis, and stressors-based management of the whole water, sediment, groundwater, soil, and air system is required considering land use and the interaction with a changing climate. Extending this holistic approach beyond a consideration of existing pressures by anticipating on future ones to use and protect the aquatic environment in a sustainable way is one of the big challenges.


Subject(s)
Conservation of Energy Resources/methods , Environmental Monitoring/methods , Rivers , Water Pollution/prevention & control , Europe , International Cooperation , Risk Factors , Water Movements , Water Pollutants, Chemical
4.
Mol Ecol ; 15(4): 1021-31, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16599964

ABSTRACT

The invasion of the zebra mussel, Dreissena polymorpha, into North American waters has resulted in profound ecological disturbances and large monetary losses. This study examined the invasion history and patterns of genetic diversity among endemic and invading populations of zebra mussels using DNA sequences from the mitochondrial cytochrome oxidase I (COI) gene. Patterns of haplotype frequency indicate that all invasive populations of zebra mussels from North America and Europe originated from the Ponto-Caspian Sea region. The distribution of haplotypes was consistent with invasive populations arising from the Black Sea drainage, but could not exclude the possibility of an origin from the Caspian Sea drainage. Similar haplotype frequencies among North American populations of D. polymorpha suggest colonization by a single founding population. There was no evidence of invasive populations arising from tectonic lakes in Turkey, while lakes in Greece and Macedonia contained only Dreissena stankovici. Populations in Turkey might be members of a sibling species complex of D. polymorpha. Ponto-Caspian derived populations of D. polymorpha (theta = 0.0011) and Dreissena bugensis (one haplotype) exhibited low levels of genetic diversity at the COI gene, perhaps as a result of repeated population bottlenecks. In contrast, geographically isolated tectonic lake populations exhibited relatively high levels of genetic diversity (theta = 0.0032 to 0.0134). It is possible that the fluctuating environment of the Ponto-Caspian basin facilitated the colonizing habit of invasive populations of D. polymorpha and D. bugensis. Our findings were concordant with the general trend of destructive freshwater invaders in the Great Lakes arising from the Ponto-Caspian Sea basin.


Subject(s)
Animal Migration , Dreissena/genetics , Ecosystem , Geography , Animals , DNA, Mitochondrial/genetics , Dreissena/growth & development , Electron Transport Complex IV/genetics , Fresh Water , Gene Frequency , Genes, Mitochondrial , Haplotypes , North America , Oceans and Seas , Phylogeny , Polymorphism, Genetic , Population Growth
SELECTION OF CITATIONS
SEARCH DETAIL
...