Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 13(3): e0089923, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38385669

ABSTRACT

Whole-genome sequence of ET2 strain, isolated from the roots of leafless orchid, constitutes a single circular chromosome of 3,604,840 bp (69.44% G + C content). BLAST+-based average nucleotide identity (ANIb) and digital DNA-DNA hybridization values indicate that ET2 may be a novel Microbacterium species. Genes putatively involved in plant-microbial interactions were predicted.

2.
Microbiol Resour Announc ; 12(3): e0122122, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36840594

ABSTRACT

The genome of Thermomicrobium sp. strain 4228-Ro, an aerobic thermophilic bacterium isolated from a Kamchatka hot spring, was sequenced and analyzed. The genome assembly comprises 13 contigs with a total length of 3,068,448 bp. Genome analysis revealed the pathway of aerobic utilization of sugars, which was corroborated by growth experiments.

3.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955702

ABSTRACT

Nanopore sequencing (ONT) is a new and rapidly developing method for determining nucleotide sequences in DNA and RNA. It serves the ability to obtain long reads of thousands of nucleotides without assembly and amplification during sequencing compared to next-generation sequencing. Nanopore sequencing can help for determination of genetic changes leading to antibiotics resistance. This study presents the application of ONT technology in the assembly of an E. coli genome characterized by a deletion of the tolC gene and known single-nucleotide variations leading to antibiotic resistance, in the absence of a reference genome. We performed benchmark studies to determine minimum coverage depth to obtain a complete genome, depending on the quality of the ONT data. A comparison of existing programs was carried out. It was shown that the Flye program demonstrates plausible assembly results relative to others (Shasta, Canu, and Necat). The required coverage depth for successful assembly strongly depends on the size of reads. When using high-quality samples with an average read length of 8 Kbp or more, the coverage depth of 30× is sufficient to assemble the complete genome de novo and reliably determine single-nucleotide variations in it. For samples with shorter reads with mean lengths of 2 Kbp, a higher coverage depth of 50× is required. Avoiding of mechanical mixing is obligatory for samples preparation. Nanopore sequencing can be used alone to determine antibiotics-resistant genetic features of bacterial strains.


Subject(s)
Nanopore Sequencing , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
4.
RSC Adv ; 10(40): 24027-24036, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-35517320

ABSTRACT

Composite films containing poly(vinyl alcohol) filled with different amounts of graphene oxide (2 and 4 wt%) were prepared by the solution casting technique, and the mechanical properties of the resulting materials were modified with different amounts of glycerol as a plasticizer. Two series of pure poly(vinyl alcohol) and graphene oxide-loaded films with fixed amounts of water were used for modification with glycerol, since water can also serve as a plasticizer for poly(vinyl alcohol). The morphology and physical properties of the plasticized and non-plasticized composites were studied; tensile tests were performed to investigate and compare their mechanical properties. Glycerol addition does not affect the excellent compatibility of the filler with the polymer matrix and uniform distribution of graphene oxide in poly(vinyl alcohol). For poly(vinyl alcohol)/graphene oxide films an increase of the Young's modulus and yield stress was found with an increase of the filler content; the Young's modulus for poly(vinyl alcohol) filled with 4 wt% of graphene oxide is almost two times higher than that of the pure polymer. Simultaneously, a sharp decrease of the elongation at break from 80% for pure PVA to about 5% for the PVA/GO composite with 4 wt% of GO is observed, and the film's brittleness dramatically increases. It was shown that the addition of glycerol to the composite films leads both to the Young's modulus decrease and tensile energy at break increase; here the Young's modulus decreases by 18 times after addition of 20 wt% of glycerol to the poly(vinyl alcohol) film filled with 4 wt% of graphene oxide. Thus, the use of plasticizer results in a significant increase of the ductile properties of graphene oxide filled poly(vinyl alcohol) composite films, and the higher the water content in the composite film, the more drastic the increase of the ductile properties observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...