Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chim Acta ; 1277: 341634, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37604607

ABSTRACT

Over the last few years, the SARS-CoV-2 pandemic has made the need for rapid, affordable diagnostics more compelling than ever. While traditional laboratory diagnostics like PCR and well-plate ELISA are sensitive and specific, they can be costly and take hours to complete. Diagnostic tests that can be used at the point-of-care or at home, like lateral flow assays (LFAs) are a simple, rapid alternative, but many commercially available LFAs have been criticized for their lack of sensitivity compared to laboratory methods like well-plate ELISAs. The Capillary-Driven Immunoassay (CaDI) device described in this work uses microfluidic channels and capillary action to passively automate the steps of a traditional well-plate ELISA for visual read out. This work builds on prior capillary-flow devices by further simplifying operation and use of colorimetric detection. Upon adding sample, an enzyme-conjugated secondary antibody, wash steps, and substrate are sequentially delivered to test and control lines on a nitrocellulose strip generating a colorimetric response. The end user can visually detect SARS-CoV-2 antigen in 15-20 min by naked eye, or results can be quantified using a smartphone and software such as ImageJ. An analytical detection limit of 83 PFU/mL for SARS-CoV-2 was determined for virus in buffer, and 222 PFU/mL for virus spiked into nasal swabs using image analysis, similar to the LODs determined by traditional well-plate ELISA. Additionally, a visual detection limit of 100 PFU/mL was determined in contrived nasal swab samples by polling 20 untrained end-users. While the CaDI device was used for detecting clinically relevant levels of SARS-CoV-2 in this study, the CaDI device can be easily adapted to other immunoassay applications by changing the reagents and antibodies.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Immunoassay , Enzyme-Linked Immunosorbent Assay , Antibodies , COVID-19 Testing
2.
Anal Chim Acta ; 1265: 341257, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37230584

ABSTRACT

Electrochemical DNA sensors can be operated in either static or flow-based detection schemes. In static schemes, manual washing steps are still necessary, resulting in a tedious and time-consuming process. In contrast, in flow-based electrochemical sensors, the current response is collected when the solution flows through the electrode continuously. However, the drawback of such a flow system is the low sensitivity due to the limited time for the interaction between the capturing element and the target. Herein, we propose a novel electrochemical capillary-driven microfluidic DNA sensor to combine the advantages of static and flow-based electrochemical detection systems into a single device by incorporating burst valve technology. The microfluidic device with a two-electrode configuration was applied for the simultaneous detection of two different DNA markers, human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) cDNA, via the specific interaction between pyrrolidinyl peptide nucleic acids (PNA) probes and the DNA target. The integrated system, while requiring a small sample volume (7 µL for each sample loading port) and less analysis time, achieved good performance in terms of the limits of detection (LOD) (3SDblank/slope) and quantification (LOQ) (10SDblank/slope) at 1.45 nM and 4.79 nM for HIV and 1.20 nM and 3.96 nM for HCV, respectively. The simultaneous detection of HIV-1 and HCV cDNA prepared from human blood samples showed results that are in complete agreement with the RT‒PCR assay. The results qualify this platform as a promising alternative for the analysis of either HIV-1/HCV or coinfection that can be easily adapted for other clinically important nucleic acid-based markers.


Subject(s)
Coinfection , HIV Infections , HIV-1 , Hepatitis C , Humans , Hepacivirus/genetics , Microfluidics , HIV-1/genetics , DNA, Complementary , DNA , Hepatitis C/diagnosis , HIV Infections/diagnosis
3.
Anal Methods ; 15(22): 2721-2728, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37099406

ABSTRACT

A capillary-driven microfluidic sequential flow device, designed for eventual at-home or doctor's office use, was developed to perform an enzyme-linked immunosorbent assay (ELISA) for serology assays. Serology assays that detect SARS-CoV-2 antibodies can be used to determine prior infection, immunity status, and/or individual vaccination status and are typically run using well-plate ELISAs in centralized laboratories, but in this format SARs-CoV-2 serology tests are too expensive and/or slow for most situations. Instead, a point-of-need device that can be used at home or in doctor's offices for COVID-19 serology testing would provide critical information for managing infections and determining immune status. Lateral flow assays are common and easy to use, but lack the sensitivity needed to reliably detect SARS-CoV-2 antibodies in clinical samples. This work describes a microfluidic sequential flow device that is as simple to use as a lateral flow assay, but as sensitive as a well-plate ELISA through sequential delivery of reagents to the detection area using only capillary flow. The device utilizes a network of microfluidic channels made of transparency film and double-sided adhesive combined with paper pumps to drive flow. The geometry of the channels and storage pads enables automated sequential washing and reagent addition steps with two simple end-user steps. An enzyme label and colorimetric substrate produce an amplified, visible signal for increased sensitivity, while the integrated washing steps decrease false positives and increase reproducibility. Naked-eye detection can be used for qualitative results or a smartphone camera for quantitative analysis. The device detected antibodies at 2.8 ng mL-1 from whole blood, while a well-plate ELISA using the same capture and detection antibodies could detect 1.2 ng mL-1. The performance of the capillary-driven immunoassay (CaDI) system developed here was confirmed by demonstrating SARS-CoV-2 antibody detection, and we believe that the device represents a fundamental step forward in equipment-free point-of-care technology.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Microfluidics , Reproducibility of Results , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral
4.
Curr Top Med Chem ; 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36330618

ABSTRACT

BACKGROUND: The demand for point-of-care testing (POCT) devices has rapidly grown since they offer immediate test results with ease of use, makingthem suitable for home self-testing patients and caretakers. However, the POCT development has faced the challenges of increased cost and limited resources. Therefore, the paper substrate as a low-cost material has been employed to develop a cost-effective POCT device, known as "Microfluidic paper-based analytical devices (µPADs)". This device is gaining attention as a promising tool for medicinal diagnostic applications owing to its unique features of simple fabrication, low cost, enabling manipulation flow (capillarydriven flow), the ability to store reagents, and accommodating multistep assay requirements. OBJECTIVE: This review comprehensively examines the fabrication methods and device designs (2D/3D configuration) and their advantages and disadvantages, focusing on updated µPADs applications for motif identification. METHODS: The evolution of paper-based devices, starting from the traditional devices of dipstick and lateral flow assay (LFA) with µPADs, has been described. Patterned structure fabrication of each technique has been compared among the equipment used, benefits, and drawbacks. Microfluidic device designs, including 2D and 3D configurations, have been introduced as well as their modifications. Various designs of µPADs have been integrated with many powerful detection methods such as colorimetry, electrochemistry, fluorescence, chemiluminescence, electrochemiluminescence, and SER-based sensors for medicinal diagnosis applications. CONCLUSION: The µPADs potential to deal with commercialization in terms of the state-of-the-art of µPADs in medicinal diagnosis has been discussed. A great prototype, which is currently in a reallife application breakthrough, has been updated.

5.
Anal Methods ; 14(18): 1774-1781, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35481474

ABSTRACT

Among lateral flow immunoassay (LFIA) platforms, enzyme-based LFIAs provide signal amplification to improve sensitivity. However, most enzyme-based LFIAs require multiple timed steps, complicating their utility in point-of-care testing (POCT). Here, we report a microfluidic interface for LFIAs that automates sample, buffer, and reagent addition, greatly simplifying operation while achieving the high analytical stringency associated with more complex assays. The microfluidic interface also maintains the low cost and small footprint of standard LFIAs. The platform is fabricated from a combination of polyester film, double-sided adhesive tape, and nitrocellulose, and fits in the palm of your hand. All reagents are dried on the nitrocellulose to facilitate sequential reagent delivery, and the sample is used as the wash buffer to minimize steps. After the sample addition, a user simply waits 15 min for a colorimetric result. This manuscript discusses the development and optimization of the channel geometry to achieve a simple step enzyme amplified immunoassay. As a proof-of-concept target, we selected lipoarabinomannan (LAM), a WHO identified urinary biomarker of active tuberculosis, to demonstrate the device feasibility and reliability. The results revealed that the device successfully detected LAM in phosphate buffer (PBS) as well as spiked urine samples within 15 min after sample loading. The minimum concentration of color change was achieved at 25 ng mL-1.


Subject(s)
Microfluidics , Collodion , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay , Reproducibility of Results
6.
PLoS One ; 16(9): e0257615, 2021.
Article in English | MEDLINE | ID: mdl-34547058

ABSTRACT

The World Health Organization (WHO) calls for the development of a rapid, biomarker-based, non-sputum test capable of detecting all forms of tuberculosis (TB) at the point-of-care to enable immediate treatment initiation. Lipoarabinomannan (LAM) is the only WHO-endorsed TB biomarker that can be detected in urine, an easily collected sample matrix. For obtaining optimal sensitivity, we and others have shown that some form of sample pretreatment is necessary to remove background from patient urine samples. A number of systems are paper-based often destined for resource limited settings. Our current work presents incorporation of one such sample pretreatment, proteinase K (ProK) immobilized on paper (IPK) and test its performance in comparison to standard proteinase K (SPK) treatment that involves addition and deactivation at high temperature prior to performing a capture ELISA. Herein, a simple and economical method was developed for using ProK immobilized strips to pretreat urine samples. Simplification and cost reduction of the proposed pretreatment strip were achieved by using Whatman no.1 paper and by minimizing the concentration of ProK (an expensive but necessary reagent) used to pretreat the clinical samples prior to ELISA. To test the applicability of IPK, capture ELISA was carried out on either LAM-spiked urine or the clinical samples after pretreatment with ProK at 400 µg/mL for 30 minutes at room temperature. The optimal conditions and stability of the IPK were tested and validation was performed on a set of 25 previously analyzed archived clinical urine samples with known TB and HIV status. The results of IPK and SPK treated samples were in agreement showing that the urine LAM test currently under development has the potential to reach adult and pediatric patients regardless of HIV status or site of infection, and to facilitate global TB control to improve assay performance and ultimately treatment outcomes.


Subject(s)
Biomarkers/urine , Endopeptidase K/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Tuberculosis/diagnosis , Endopeptidase K/chemistry , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Humans , Lipopolysaccharides/urine , Paper , Temperature
7.
Talanta ; 178: 1017-1023, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29136790

ABSTRACT

A simple paper-based sensor with electrochemical detection was first developed for rapid, selective, and sensitive determination of acetylcholinesterase (AChE). The screen-printed graphene electrode was used as working electrode providing sensitivity for the sensor. The amperometric detection of AChE is based on the determination of thiocholine (TCh) produced from hydrolysis of acetylthiocholine chloride (ATCh) by AChE. To detect TCh, the ATCh immobilized sheet was stacked onto the detection sheet using double adhesive tape, then samples of AChE were dropped on the back side of an ATCh immobilized sheet with only 1min of incubation time. To avoid interference, glutathione (GSH), the potential of 0.5V vs. Ag/AgCl was applied onto a graphene electrode and the current, which depends on AChE concentration, was measured. Under optimized conditions, the limit of detection (LOD) from the experiment of AChE determination was 0.1U/mL with AChE concentration in range of 0.1-15U/mL. The data correlated well with the data obtained using spectrophotometric method. The developed sensor had been successfully applied to detect AChE in blood samples.


Subject(s)
Acetylcholinesterase/metabolism , Enzyme Assays/instrumentation , Graphite/chemistry , Printing , Acetylthiocholine/metabolism , Animals , Electrochemistry , Electrodes , Electrophorus , Hydrogen-Ion Concentration , Kinetics , Thiocholine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL