Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 299(6): 104746, 2023 06.
Article in English | MEDLINE | ID: mdl-37094698

ABSTRACT

Enzymes from thermophilic organisms are interesting biocatalysts for a wide variety of applications in organic synthesis, biotechnology, and molecular biology. Next to an increased stability at elevated temperatures, they were described to show a wider substrate spectrum than their mesophilic counterparts. To identify thermostable biocatalysts for the synthesis of nucleotide analogs, we performed a database search on the carbohydrate and nucleotide metabolism of Thermotoga maritima. After expression and purification of 13 enzyme candidates involved in nucleotide synthesis, these enzymes were screened for their substrate scope. We found that the synthesis of 2'-deoxynucleoside 5'-monophosphates (dNMPs) and uridine 5'-monophosphate from nucleosides was catalyzed by the already known wide-spectrum thymidine kinase and the ribokinase. In contrast, no NMP-forming activity was detected for adenosine-specific kinase, uridine kinase, or nucleotidase. The NMP kinases (NMPKs) and the pyruvate-phosphate-dikinase of T. maritima exhibited a rather specific substrate spectrum for the phosphorylation of NMPs, while pyruvate kinase, acetate kinase, and three of the NMPKs showed a broad substrate scope with (2'-deoxy)nucleoside 5'-diphosphates as substrates. Based on these promising results, TmNMPKs were applied in enzymatic cascade reactions for nucleoside 5'-triphosphate synthesis using four modified pyrimidine nucleosides and four purine NMPs as substrates, and we determined that base- and sugar-modified substrates were accepted. In summary, besides the already reported TmTK, NMPKs of T. maritima were identified to be interesting enzyme candidates for the enzymatic production of modified nucleotides.


Subject(s)
Nucleoside-Phosphate Kinase , Thermotoga maritima , Nucleotides/chemistry , Phosphorylation , Pyrimidine Nucleosides/chemistry , Substrate Specificity , Thermotoga maritima/enzymology , Thermotoga maritima/genetics , Uridine Monophosphate/metabolism , Nucleoside-Phosphate Kinase/genetics , Nucleoside-Phosphate Kinase/metabolism
2.
Stem Cell Res Ther ; 12(1): 542, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654486

ABSTRACT

BACKGROUND: Graft-contaminating tumor cells correlate with inferior outcome in high-risk neuroblastoma patients undergoing hematopoietic stem cell transplantation and can contribute to relapse. Motivated by the potential therapeutic benefit of tumor cell removal as well as the high prognostic and diagnostic value of isolated circulating tumor cells from stem cell grafts, we established a label-free acoustophoresis-based microfluidic technology for neuroblastoma enrichment and removal from peripheral blood progenitor cell (PBPC) products. METHODS: Neuroblastoma patient-derived xenograft (PDX) cells were spiked into PBPC apheresis samples as a clinically relevant model system. Cells were separated by ultrasound in an acoustophoresis microchip and analyzed for recovery, purity and function using flow cytometry, quantitative real-time PCR and cell culture. RESULTS: PDX cells and PBPCs showed distinct size distributions, which is an important parameter for efficient acoustic separation. Acoustic cell separation did not affect neuroblastoma cell growth. Acoustophoresis allowed to effectively separate PDX cells from spiked PBPC products. When PBPCs were spiked with 10% neuroblastoma cells, recoveries of up to 98% were achieved for PDX cells while more than 90% of CD34+ stem and progenitor cells were retained in the graft. At clinically relevant tumor cell contamination rates (0.1 and 0.01% PDX cells in PBPCs), neuroblastoma cells were depleted by more than 2-log as indicated by RT-PCR analysis of PHOX2B, TH and DDC genes, while > 85% of CD34+ cells could be retained in the graft. CONCLUSION: These results demonstrate the potential use of label-free acoustophoresis for PBPC processing and its potential to develop label-free, non-contact tumor cell enrichment and purging procedures for future clinical use.


Subject(s)
Hematopoietic Stem Cell Transplantation , Neuroblastoma , Peripheral Blood Stem Cells , Antigens, CD34 , Cell Separation , Hematopoietic Stem Cells , Heterografts , Humans , Neuroblastoma/therapy
SELECTION OF CITATIONS
SEARCH DETAIL