Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Genet Evol ; 119: 105576, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408586

ABSTRACT

Lymnaeid snails are some of the most widespread snails and are the first intermediate host of trematode parasites that affect human and livestock health. A full understanding of the genetic relationship of hosts and parasites is of paramount importance for effective parasite management. The present study assessed the prevalence of trematode larvae in lymnaeid snails and examined the genetic diversity of these snails collected across Thailand. We collected 672 lymnaeid snails from 39 locations in 22 provinces of six regions in Thailand. Subsequently, cercarial infection in the snails was observed by using the shedding method. Lymnaeid snails released 5 types of trematode cercariae, namely, xiphidiocercariae, echinostome cercariae I, echinostome cercariae II, furcocercous cercariae, and strigea cercariae. The phylogenetic analysis based on ITS2 and 28S rDNA sequences revealed 5 cercaria types assigned to four trematode families, of which two belong to the group of human intestinal flukes. Combination of shell morphology and sequence analysis of the mitochondrial COI and 16S rDNA genes, the lymnaeid snails were classified into two species, Radix rubiginosa and Orientogalba viridis. Moreover, the combined dataset of mtDNA genes (COI + 16S rDNA) from R. rubiginosa and O. viridis revealed 32 and 15 different haplotypes, respectively, of which only a few haplotypes were infected with cercariae. The genetic diversity and genetic structure revealed that R. rubiginosa and O. viridis experienced a bottleneck phenomenon, and showed limited gene flow between populations. Population demographic history analyses revealed that R. rubiginosa and O. viridis experienced population reductions followed by recent population expansion. These findings may improve our understanding of parasite-lymnaeid evolutionary relationships, as well as the underlying molecular genetic basis, which is information that can be used for further effective control of the spread of trematode disease.


Subject(s)
Snails , Trematoda , Animals , Humans , Phylogeny , Thailand/epidemiology , Snails/parasitology , Trematoda/genetics , Trematoda/anatomy & histology , Cercaria/genetics , DNA, Ribosomal , Genetic Variation
2.
PLoS One ; 19(1): e0297761, 2024.
Article in English | MEDLINE | ID: mdl-38277375

ABSTRACT

Indoplanorbis exustus is a freshwater gastropod belonging to the family Planorbidae. This snail is widely distributed across the tropics and plays an important role as the intermediate host for trematodes. However, relatively little is understood regarding the genetic relationship between I. exustus and trematodes. The goals of this study were to investigate the current transmission status of trematode cercariae in I. exustus in Thailand and to examine the genetic diversity, genetic structure, and demographic history of I. exustus. We collected 575 I. exustus from 21 provinces across six regions of Thailand and investigated cercarial infections by using the shedding method. I. exustus from two provinces were infected with cercarial trematodes, and two types of cercarial stages were molecularly identified as furcocercous cercaria and xiphidiocercariae. Phylogenetic tree analysis based on 28S rDNA and ITS2 sequences demonstrated that furcocercous cercaria and xiphidiocercariae were closely clustered with a clade of Euclinostomum sp. and Xiphidiocercariae sp., respectively. Phylogenetic and network analyses of I. exustus haplotypes based on the COI, 16S rDNA, and ITS1 genes demonstrated four main clades. Only snails in clade A were distributed in all regions of Thailand and harbored trematode cercariae. The level of genetic diversity of I. exustus was relatively high, but most populations were not genetically different, thus suggesting the appearance of gene flow within the I. exustus populations. Overall, the haplotype network was star-shaped, thus suggesting the recent demographic expansion of populations. This result was also supported by the unimodal mode of the mismatch distribution graph and the large negative values of the neutrality tests. Therefore, the I. exustus snail was likely another freshwater snail of the invasive species in Thailand. This information will aid in monitoring the spread of the parasitic trematodes carried by I. exustus from different populations.


Subject(s)
Trematoda , Trematode Infections , Animals , Phylogeny , Thailand/epidemiology , Trematoda/genetics , Snails/parasitology , DNA, Ribosomal , Cercaria/genetics , Genetics, Population
3.
Parasitol Res ; 123(1): 93, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212518

ABSTRACT

Indoplanorbis exustus, a freshwater pulmonate snail, is widely distributed in tropical and subtropical zones and plays a significant role as an intermediate host for trematode parasites. Various genetic markers have been used for species identification and phylogenetic studies of this snail. However, there are limited studies about their molecular genetics based on nuclear ribosomal DNA (rDNA) genes. A genetic analysis of I. exustus in Thailand was conducted based on the nuclear 18S rDNA (339 bp) and 28S rDNA (1036 bp) genes. Indoplanorbis snails were collected from 29 localities in 21 provinces covering six regions of Thailand. Nucleotide sequences from 44 snails together with sequences from the GenBank database were examined for phylogenetic relationships and genetic diversity. All sequences of the selected nucleotide regions exhibited a high level of similarity (99%) to the sequences of I. exustus in the GenBank database. The maximum likelihood tree based on the 18S and 28S rDNA fragment sequences of I. exustus in Thailand revealed only one group with clear separation from another genus in the family Planorbidae. The I. exustus 28S rDNA sequences showed intraspecific genetic divergence ranging from 0 to 0.78% and were classified into 8 different haplotypes. Conversely, the 18S rDNA data showed lower variation than the 28S rDNA data and revealed a single haplotype and intraspecific distances of zero among all sampled individuals. The haplotype network of 28S rDNA sequences of I. exustus in Thailand revealed six unique haplotypes and two haplotypes shared by at least two regions. Overall, both markers were successful in the identification of I. exustus. However, these markers, particularly the 18S rDNA, may not be suitable for genetic analysis within the species, particularly for population genetic studies, due to their limited variation as seen in this study. In summary, this study not only enhances understanding of genetic variation in I. exustus but is also useful for the selection of molecular markers in future genetic research.


Subject(s)
Genetic Variation , Snails , Humans , Animals , DNA, Ribosomal/genetics , Phylogeny , Thailand , Snails/parasitology , Fresh Water
SELECTION OF CITATIONS
SEARCH DETAIL
...