Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 8(1): 249, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321560

ABSTRACT

We report the phonon and magnetic properties of various well-stabilized Co3O4 nanoparticles. The net valence in cobalt (II)/(III) cation can be obtained by subtracting the Co2+ ions in tetrahedral interstices and Co3+ ions in the octahedral interstices, respectively, which will possess spatial inhomogeneity of its magnetic moment via Co2+ in tetrahedra and Co3+ in octahedral configurations in the normal spinel structure. Furthermore, the distribution of Co2+/Co3+ governed by various external (magnetic field and temperature) and internal (particle size and slightly distorted CoO6 octahedra) sources, have led to phenomena such as a large redshift of phonon-phonon interaction and short-range magnetic correlation in the inverse spinel structure. The outcome of our study is important in terms of the future development of magnetic semiconductor spintronic devices of Co3O4.

3.
Nanoscale Res Lett ; 12(1): 207, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28325039

ABSTRACT

After a decade of effort, a large number of magnetic memory nanoparticles with different sizes and core/shell compositions have been developed. While the field-cooling memory effect is often attributed to particle size and distribution effects, other magnetic coupling parameters such as inter- and intra-coupling strength, exchange bias, interfacial pinned spins, and the crystallinity of the nanoparticles also have a significant influence on magnetization properties and mechanisms. In this study, we used the analysis of static- and dynamic-magnetization measurements to investigate NiO nanoparticles with different sizes and discussed how these field-cooling strengths affect their memory properties. We conclude that the observed field-cooling memory effect from bare, small size NiO nanoparticles arises because of the unidirectional anisotropy which is mediated by the interfacial strongly pinned spins.

SELECTION OF CITATIONS
SEARCH DETAIL