Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Nutrients ; 12(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283715

ABSTRACT

Fasting is known to cause physiological changes in the endocrine pancreas, including decreased insulin secretion and increased reactive oxygen species (ROS) production. However, there is no consensus about the long-term effects of intermittent fasting (IF), which can involve up to 24 hours of fasting interspersed with normal feeding days. In the present study, we analyzed the effects of alternate-day IF for 12 weeks in a developing and healthy organism. Female 30-day-old Wistar rats were randomly divided into two groups: control, with free access to standard rodent chow; and IF, subjected to 24-hour fasts intercalated with 24-hours of free access to the same chow. Alternate-day IF decreased weight gain and food intake. Surprisingly, IF also elevated plasma insulin concentrations, both at baseline and after glucose administration collected during oGTT. After 12 weeks of dietary intervention, pancreatic islets displayed increased ROS production and apoptosis. Despite their lower body weight, IF animals had increased fat reserves and decreased muscle mass. Taken together, these findings suggest that alternate-day IF promote ß -cell dysfunction, especially in developing animals. More long-term research is necessary to define the best IF protocol to reduce side effects.


Subject(s)
Adipose Tissue/metabolism , Eating , Fasting/adverse effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Weight Loss , Adipose Tissue/pathology , Animals , Apoptosis , Fasting/physiology , Female , Insulin/blood , Insulin Secretion , Muscles/metabolism , Muscles/pathology , Rats, Wistar , Reactive Oxygen Species/metabolism , Time Factors
2.
Endocrine ; 68(2): 287-295, 2020 05.
Article in English | MEDLINE | ID: mdl-31997150

ABSTRACT

PURPOSE: Diabetes mellitus (DM) has a multifactorial etiology that imparts a particular challenge to effective pharmacotherapy. Thyroid hormone actions have demonstrated beneficial effects in diabetic as well as obese rats. In both conditions, inflammation status plays a crucial role in the development of insulin resistance. Taking this into consideration, the present study aimed to demonstrate another possible pathway of thyroid hormone action on insulin sensitivity in a spontaneous type 2 diabetic rat model: the Goto-Kakizaki (GK) rats. GK animals present all typical hallmarks of type 2 DM (T2DM), except the usual peripheric inflammatory condition, observed in the other T2DM animal models. METHODS: GK rats were treated or not with 3,5,3'triiodothyronine (T3). Insulin sensitivity, glucose tolerance, and proteins related to glucose uptake and utilization were evaluated in the skeletal muscle, white adipose tissue, and liver. RESULTS: GK rats T3-treated presented enhanced insulin sensitivity, increased GLUT-4 content in the white adipose tissue and skeletal muscle, and increased hexokinase and citrate synthase content in skeletal muscle. Both non-treated and T3-treated GK rats did not present alterations in cytokine content in white adipose tissue, skeletal muscle, liver, and serum. CONCLUSIONS: These results indicate that T3 improves insulin sensitivity in diabetic rats by a novel inflammatory-independent mechanism.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Insulin , Muscle, Skeletal , Rats , Triiodothyronine
3.
Life Sci ; 192: 253-258, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29132997

ABSTRACT

AIMS: Diabetes mellitus (DM) and impairments of glucose metabolism and insulin resistance in the brain have been suggested as a likely etiology of Alzheimer's disease (AD). Studies have shown that thyroid hormones (THs) improve insulin sensitivity in DM rats and act as mediators of the plasticity of the nervous system altering behavior and cognitive function. Based on these findings, this study aimed to evaluate the effects of diabetes and triiodothyronine (T3) treatment upon proteins associated with DM and AD in the central nervous system. MAIN METHODS: Euglycemic and Diabetic (alloxan-induced) male Wistar rats were daily treated with T3 (1.5µg/100g body weight) or vehicle (saline) for a 4-week period and subdivided into the following groups: euglycemic treated with saline (Control=C); diabetic treated with saline (Diabetic=D); euglycemic treated with T3 (T3); diabetic treated with T3 (DT3). The expression of insulin signaling, neurodegenerative and neuron survival markers was evaluated in the hippocampus by immunoblotting, ELISA, and RT-PCR. KEY FINDINGS: T3 treatment decreased glycemia, restored the insulin signaling and reduced the activation of glycogen synthase kinase 3 (GSK3) and tau proteins content in the hippocampus of diabetic rats. SIGNIFICANCE: The present data provide evidence that T3 treatment of diabetic rats is able to improve insulin sensitivity and reduce the activation of the neurodegenerative pathway in the brain, which might provide neuroprotection in this experimental model.


Subject(s)
Diabetes Mellitus, Experimental/pathology , Hippocampus/pathology , Insulin , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/prevention & control , Signal Transduction/drug effects , Triiodothyronine/therapeutic use , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Cell Survival/drug effects , Enzyme Activation/drug effects , Glycogen Synthase Kinase 3/metabolism , Male , Neurons/drug effects , Neurons/pathology , Rats , Rats, Wistar , Thyroxine/blood , Triiodothyronine/blood
4.
PLoS One ; 12(12): e0189622, 2017.
Article in English | MEDLINE | ID: mdl-29220408

ABSTRACT

Type 2 Diabetes mellitus (T2DM) is an evident growing disease that affects different cultures throughout the world. T2DM occurs under the influence of three main factors: the genetic background, environmental and behavioral components. Obesity is strongly associated to the development of T2DM in the occident, while in the orient most of the diabetic patients are considered lean. Genetics may be a key factor in the development of T2DM in societies where obesity is not a recurrent public health problem. Herein, two different models of rats were used to understand their differences and reliability as experimental models to study the pathophysiology of T2DM, in two different approaches: the genetic (GK rats) and the environmental (HFD-induced obese rats) influences. GK rats were resistant to weight gain even though food/energy consumption (relative to body weight) was higher in this group. HFD, on the other hand, induced obesity in Wistar rats. White adipose tissue (WAT) expansion in this group was accompanied by immune cells infiltration, inflammation and insulin resistance. GK rats also presented WAT inflammation and insulin resistance; however, no immune cells infiltration was observed in the WAT of this group. Liver of HFD group presented fat accumulation without differences in inflammatory cytokines content, while liver of GK rats didn't present fat accumulation, but showed an increase of IL-6 and IL-10 content and glycogen. Also, GK rats showed increased plasma GOT and GPT. Soleus muscle of HFD presented normal insulin signaling, contrary to GK rats, which presented higher content of basal phosphorylation of GSK-3ß. Our results demonstrated that HFD developed a mild insulin resistance in Wistar rats, but was not sufficient to develop T2DM. In contrast, GK rats presented all the typical hallmarks of T2DM, such as insulin resistance, defective insulin production, fasting hyperglycemia/hyperinsulinemia and lipid plasma alteration. Thus, on the given time point of this study, we may conclude that only GK rats shown to be a reliable model to study T2DM.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Diet, High-Fat , Disease Models, Animal , Obesity/physiopathology , Animals , Rats
5.
Rev. bras. med. esporte ; 18(2): 122-125, mar.-abr. 2012. ilus
Article in Portuguese | LILACS | ID: lil-638679

ABSTRACT

Durante contrações musculares de alta intensidade intervaladas por curtos períodos de tempo há importante participação do metabolismo glicolítico e, consequentemente, aumento das concentrações de lactato sanguíneo. O objetivo do estudo foi avaliar as respostas lactacidêmicas agudas e crônicas de ratos Wistar submetidos a um treinamento intermitente de alta intensidade (salto tipo jump squat) de três sessões semanais, a cada 24h, três séries de 12 repetições com intervalos de 60s entre cada uma. Houve aumento das concentrações de lactato sanguíneo durante a sessão aguda do treinamento (lactacidemia basal vs. lactacidemia após último esforço, P < 0,001). Contrariamente, após seis semanas de treinamento, ocorreu redução de 49% na resposta lactacidêmica ao exercício em relação à primeira sessão, P = 0,0002. O exercício intermitente de alta intensidade intervalado favorece a participação do sistema glicolítico; no entanto, o treinamento intermitente de alta intensidade promove redução das respostas lactacidêmicas, sugerindo melhora da capacidade de ressíntese de fosfocreatina e da biogênese mitocondrial.


During high-intensity intermittent muscle contractions for short periods of time there is an important involvement of glycolytic metabolism and consequent increased blood lactate concentrations. This study aimed to evaluate the blood lactate responses in Wistar rats submitted to high-intensity intermittent training (jump squat) protocol during 6 weeks, 3 sessions, 12 x/session, 60s of interval between sessions. There was significant increase of blood lactate concentrations during the acute bout of high-intensity intermittent exercise (basal blood lactate vs blood lactate after last effort, P<0.001); however, after six weeks of training, there was significant reduction (49%) in blood lactate response to the exercise in comparison to the first session, P=0.0002. The high-intensity intermittent exercise performed at intervals of 60 seconds stimulated the glycolytic system; nevertheless, the training promoted reduction in blood lactate responses to high-intensity intermittent protocol, suggesting hence improvement in phosphocreatine recovery capacity and in mitochondrial biogenesis.

6.
Arq Bras Endocrinol Metabol ; 55(2): 155-63, 2011 Mar.
Article in Portuguese | MEDLINE | ID: mdl-21584433

ABSTRACT

OBJECTIVE: To determine if resistive exercise protocol can modulate Tnf-α, SOCS3 and glucose transporter GLUT4 genes expression in skeletal muscle, and peripheral insulin sensitivity in obese rats induced by hyperlipidic diet. MATERIALS AND METHODS: Wistar obese rats induced by hyperlipidic diet were subjected a resistive exercise protocol as jump squat. Insulin sensitivity and mRNA content of Tnf-α, SOCS3 and GLUT4 were assayed and compared among the groups: obese sedentary (OS) and exercised (OE), control sedentary (CS) and exercised (CE). RESULTS: The mRNA content of Tnf-α and SOCS3 has increased in skeletal muscle from OS and has decreased in OE group. The protein and GLUT4 mRNA contents were correlated but they did not change among the groups. Peripheral insulin sensitivity has increased in the OE compared to OS group. CONCLUSION: The resistive exercise reverses the peripheral insulin resistance and the inflammatory state in skeletal muscle from diet-induced obese rats.


Subject(s)
Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Myositis/metabolism , Obesity/metabolism , Physical Conditioning, Animal/physiology , Animals , Dietary Fats/administration & dosage , Male , Muscle Proteins/metabolism , Myositis/physiopathology , Rats , Rats, Wistar
7.
Arq. bras. endocrinol. metab ; 55(2): 155-163, mar. 2011. graf, tab
Article in Portuguese | LILACS | ID: lil-586499

ABSTRACT

OBJETIVO: Investigar em ratos obesos o efeito da prática de exercício resistido sobre a sensibilidade à insulina e sobre a expressão de citocinas pró-inflamatórias e de transportador de glicose em músculo solear. MATERIAIS E MÉTODOS: Ratos Wistar alimentados com dieta hiperlipídica (grupos obesos) foram submetidos ao protocolo de exercício tipo jump squat. A sensibilidade à insulina e a expressão gênica de Tnf-α, SOCS3 e GLUT4 foram comparadas entre os grupos obesos sedentários (OS) e exercitados (OE) e controles sedentários (CS) e exercitados (CE). RESULTADOS: A sensibilidade à insulina estava reduzida no grupo OS e elevada no OE. Os conteúdos de RNAm de Tnf-α e de SOCS3 estavam aumentados no músculo esquelético do grupo OS e reduzidos no OE. O conteúdo proteico e de RNAm de GLUT4 não diferiu entre os grupos. CONCLUSÃO: O exercício resistido reverte o quadro de resistência à insulina periférica e de inflamação no músculo esquelético de obesos induzidos por dieta.


OBJECTIVE: To determine if resistive exercise protocol can modulate Tnf-α, SOCS3 and glucose transporter GLUT4 genes expression in skeletal muscle, and peripheral insulin sensitivity in obese rats induced by hyperlipidic diet. MATERIALS AND METHODS: Wistar obese rats induced by hyperlipidic diet were subjected a resistive exercise protocol as jump squat. Insulin sensitivity and mRNA content of Tnf-α, SOCS3 and GLUT4 were assayed and compared among the groups: obese sedentary (OS) and exercised (OE), control sedentary (CS) and exercised (CE). RESULTS: The mRNA content of Tnf-α and SOCS3 has increased in skeletal muscle from OS and has decreased in OE group. The protein and GLUT4 mRNA contents were correlated but they did not change among the groups. Peripheral insulin sensitivity has increased in the OE compared to OS group. CONCLUSION: The resistive exercise reverses the peripheral insulin resistance and the inflammatory state in skeletal muscle from diet-induced obese rats.


Subject(s)
Animals , Male , Rats , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Myositis/metabolism , Obesity/metabolism , Physical Conditioning, Animal/physiology , Dietary Fats/administration & dosage , Muscle Proteins/metabolism , Myositis/physiopathology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...