Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(2): 977-997, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38033325

ABSTRACT

Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.


Subject(s)
Gene Editing , RNA, Guide, CRISPR-Cas Systems , Animals , Mice , Tissue Distribution , RNA/genetics , Oligonucleotides
2.
bioRxiv ; 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37577681

ABSTRACT

Understanding the consequences of single amino acid substitutions in cancer driver genes remains an unmet need. Perturb-seq provides a tool to investigate the effects of individual mutations on cellular programs. Here we deploy SEUSS, a Perturb-seq like approach, to generate and assay mutations at physical interfaces of the RUNX1 Runt domain. We measured the impact of 115 mutations on RNA profiles in single myelogenous leukemia cells and used the profiles to categorize mutations into three functionally distinct groups: wild-type (WT)-like, loss-of-function (LOF)-like and hypomorphic. Notably, the largest concentration of functional mutations (non-WT-like) clustered at the DNA binding site and contained many of the more frequently observed mutations in human cancers. Hypomorphic variants shared characteristics with loss of function variants but had gene expression profiles indicative of response to neural growth factor and cytokine recruitment of neutrophils. Additionally, DNA accessibility changes upon perturbations were enriched for RUNX1 binding motifs, particularly near differentially expressed genes. Overall, our work demonstrates the potential of targeting protein interaction interfaces to better define the landscape of prospective phenotypes reachable by amino acid substitutions.

3.
Int J STD AIDS ; 34(11): 785-790, 2023 10.
Article in English | MEDLINE | ID: mdl-37271811

ABSTRACT

BACKGROUND: Adherence to medication and retention in care are key contributors to the efficacy of pre-exposure prophylaxis (PrEP) for prevention of HIV. Therefore, it is important to understand factors that may impact retention in various settings that prescribe PrEP. METHODS: We evaluated factors associated with retention in care 3 and 12 months after PrEP initiation at a primary care HIV clinic in San Diego. Retention was defined as having an office/virtual visit within 1 month from the 3- or 12-months time point or interacting with the clinic leading to medication being refilled. RESULTS: A total of 199 patients were included. Retention rates were 74.4% and 52.8% at 3 and 12 months respectively. In the multivariate analysis, reporting depression or anxiety was associated with being retained in care (p = 0.004) and identifying as cisgender female was associated with lack of retention (p = 0.04) at 3 months. Testing positive for a sexually transmitted infection was associated with 12-months retention (p = 0.004); however, this was likely influenced by difference in the frequency of testing in those retained versus not retained. CONCLUSION: Ongoing efforts to determine the optimal method for provision of PrEP care that supports retention for different populations at risk for HIV, are needed.


Subject(s)
Anti-HIV Agents , HIV Infections , Pre-Exposure Prophylaxis , Sexually Transmitted Diseases , Humans , Female , HIV Infections/drug therapy , HIV Infections/prevention & control , Anti-HIV Agents/therapeutic use , Sexually Transmitted Diseases/drug therapy , Ambulatory Care Facilities , Pre-Exposure Prophylaxis/methods , Primary Health Care
4.
Sci Rep ; 13(1): 7678, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169829

ABSTRACT

Cell-cycle control is accomplished by cyclin-dependent kinases (CDKs), motivating extensive research into CDK targeting small-molecule drugs as cancer therapeutics. Here we use combinatorial CRISPR/Cas9 perturbations to uncover an extensive network of functional interdependencies among CDKs and related factors, identifying 43 synthetic-lethal and 12 synergistic interactions. We dissect CDK perturbations using single-cell RNAseq, for which we develop a novel computational framework to precisely quantify cell-cycle effects and diverse cell states orchestrated by specific CDKs. While pairwise disruption of CDK4/6 is synthetic-lethal, only CDK6 is required for normal cell-cycle progression and transcriptional activation. Multiple CDKs (CDK1/7/9/12) are synthetic-lethal in combination with PRMT5, independent of cell-cycle control. In-depth analysis of mRNA expression and splicing patterns provides multiple lines of evidence that the CDK-PRMT5 dependency is due to aberrant transcriptional regulation resulting in premature termination. These inter-dependencies translate to drug-drug synergies, with therapeutic implications in cancer and other diseases.


Subject(s)
Neoplasms , Humans , Cell Cycle Checkpoints , Cell Cycle/genetics , Neoplasms/drug therapy , Protein-Arginine N-Methyltransferases/pharmacology
5.
bioRxiv ; 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36993169

ABSTRACT

Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a "protecting oligo"), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.

6.
Cell Syst ; 12(7): 716-732.e7, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34051140

ABSTRACT

Gene fragments derived from structural domains mediating physical interactions can modulate biological functions. Utilizing this, we developed lentiviral overexpression libraries of peptides comprehensively tiling high-confidence cancer driver genes. Toward inhibiting cancer growth, we assayed ~66,000 peptides, tiling 65 cancer drivers and 579 mutant alleles. Pooled fitness screens in two breast cancer cell lines revealed peptides, which selectively reduced cellular proliferation, implicating oncogenic protein domains important for cell fitness. Coupling of cell-penetrating motifs to these peptides enabled drug-like function, with peptides derived from EGFR and RAF1 inhibiting cell growth at IC50s of 27-63 µM. We anticipate that this peptide-tiling (PepTile) approach will enable rapid de novo mapping of bioactive protein domains and associated interfering peptides.


Subject(s)
Neoplasms , Cell Proliferation , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Oncogenes , Peptides/chemistry , Peptides/pharmacology , Protein Domains
7.
CRISPR J ; 3(4): 253-275, 2020 08.
Article in English | MEDLINE | ID: mdl-32833535

ABSTRACT

CRISPR-Cas clinical trials have begun, offering a first glimpse at how DNA and RNA targeting could enable therapies for many genetic and epigenetic human diseases. The speedy progress of CRISPR-Cas from discovery and adoption to clinical use is built on decades of traditional gene therapy research and belies the multiple challenges that could derail the successful translation of these new modalities. Here, we review how CRISPR-Cas therapeutics are translated from technological systems to therapeutic modalities, paying particular attention to the therapeutic cascade from cargo to delivery vector, manufacturing, administration, pipelines, safety, and therapeutic target profiles. We also explore potential solutions to some of the obstacles facing successful CRISPR-Cas translation. We hope to illuminate how CRISPR-Cas is brought from the academic bench toward use in the clinic.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Therapy/methods , Clustered Regularly Interspaced Short Palindromic Repeats , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...