Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-33352261

ABSTRACT

Effective inducing of ovarian maturation in female shrimp broodstock is important for successful breeding programs. Vitellogenesis is a biochemical process during which a yolk protein precursor vitellogenin (Vg) is synthesized and thus, can be used to indicate ovarian maturation stage. In this study, transcriptional regulation of Vg synthesis in the black tiger shrimp, Penaeus monodon was investigated. Genome walking on 5' upstream sequence of Vg gene revealed several putative binding sites of lipophilic retinoic acid response elements (RARE), and nuclear hormone responsive elements. Deletion of RARE significantly reduced the promoter activity to drive the expression of luciferase reporter gene in Sf-9 cells. To validate the trans-factor that potentially controls Vg expression through RARE, a cDNA encoding retinoid X receptor (PmRXR), one of the RARE-bound transcription factors was cloned from P. monodon's ovary. PmRXR expression was detected in various shrimp tissues, and was up-regulated during ovary development in a similar way to Vg expression. The DNA-binding domain of PmRXR protein showed specific binding to RARE-containing region on Vg 5' upstream sequence as determined by Electrophoretic Mobility Shift Assay (EMSA). Furthermore, dsRNA-mediated PmRXR silencing in previtellogenic and vitellogenic shrimp revealed that suppression of PmRXR could reduce Vg transcript in both stages. Taken together, the results presented in this study indicate that RXR is possibly an activator protein that modulates Vg expression in shrimp ovary through the binding to RARE.


Subject(s)
Gene Expression Regulation , Penaeidae/metabolism , Retinoid X Receptors/metabolism , Vitellogenins/biosynthesis , Animals , Binding Sites , Computational Biology , Ecdysteroids/chemistry , Female , Gene Deletion , Ovary/metabolism , Ovary/physiology , Penaeidae/genetics , Promoter Regions, Genetic , RNA, Double-Stranded/metabolism , Recombinant Proteins/chemistry , Response Elements , Tretinoin/metabolism , Vitellogenesis
3.
Dev Comp Immunol ; 114: 103824, 2021 01.
Article in English | MEDLINE | ID: mdl-32791174

ABSTRACT

Argonaute family is phylogenetically subdivided into Ago and Piwi subfamilies that operate either transcriptional or post-transcriptional regulation in association with particular types of small RNAs. Among the four members of Ago subfamily (PmAgo1-4) found in black tiger shrimp Penaeus monodon, PmAgo4 exhibits gonad-restricted expression and takes part in transposon repression as the Piwi subfamily. While PmAgo1-3 participate in RNA interference (RNAi)-based mechanism, the role of PmAgo4 in RNAi is still mysterious, and was therefore investigated in this study. The results showed that knockdown of PmAgo4 in shrimp testis did not have a significant effect on the potency of PmRab7 silencing by dsPmRab7. In addition, replication of YHV as well as YHV-induced cumulative mortality in PmAgo4-knockdown shrimp are comparable to the control shrimp, suggesting the irrelevant association of PmAgo4 with RNAi-mediated gene silencing and antiviral immunity. Since PmAgo4 did not function in common with the Ago subfamily, its potential function in gametogenesis of male shrimp was further investigated. The reduction of PmAgo4 transcript levels in male shrimp revealed significant defect in testicular maturity as measured by Testicular Index (TI). Moreover, the numbers of mature sperm in spermatophore of PmAgo4-knockdown shrimp were significantly decreased comparing with the control shrimp. Our studies thus suggest a distinctive role of PmAgo4 that is not consistent with a dsRNA-mediate gene regulation and virus replication, but has a key function in controlling spermatogenesis in P. monodon.


Subject(s)
Argonaute Proteins/genetics , Nidovirales Infections/immunology , Penaeidae/physiology , Roniviridae/physiology , Testis/metabolism , Animals , Antiviral Agents/metabolism , Argonaute Proteins/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Male , Organ Specificity , RNA Interference , RNA, Double-Stranded , Spermatogenesis , Virus Replication
4.
Fish Shellfish Immunol ; 106: 948-958, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32920201

ABSTRACT

Extracellular double-stranded RNA (dsRNA) is an important modulator in innate immunity in both vertebrates and invertebrates. In shrimp, extracellular dsRNA can trigger RNAi pathway and serves as antiviral defense mechanism. However, the mechanism of dsRNA internalization into the cells has not yet known in shrimp cells. This study identified candidate cell surface proteins from shrimp hepatopancreatic cells that could interact with dsRNA by a ligand blot assay. Among the candidate proteins, a cell-surface beta subunit of ATP synthase was shown to be capable of internalizing dsRNA into shrimp hepatopancreatic cells that could rapidly occur in just 1 min upon dsRNA challenge. Colocalization between dsRNA and ATP synthase beta subunit implied correlation between dsRNA and ATP synthase beta subunit during dsRNA internalization. Furthermore, dsRNA showed colocalization with Ras-related endocytic proteins, Rab5 and Rab7 indicating that dsRNA was internalized via the receptor-mediated endocytosis. For the above evidences as well as the reduction of dsRNA internalization by angiostatin and antibodies against ATP synthase beta subunit, we propose that dsRNA interacts with ATP synthase via a nucleotide binding site in the beta subunit prior to internalize dsRNA into cells.


Subject(s)
Endocytosis , Hepatopancreas/cytology , Mitochondrial Proton-Translocating ATPases/metabolism , Penaeidae , RNA, Double-Stranded/metabolism , Animals , Cells, Cultured
5.
Article in English | MEDLINE | ID: mdl-32971288

ABSTRACT

PIWI belongs to the Argonaute protein family, which is a major protein component in RNA silencing pathway. Piwi proteins play roles in the control of transposons and germline development. They have been widely studied in vertebrates and flies, while very little is known in crustacean so far. We have previously identified and characterized a cDNA encoding Piwi protein (PmPiwi1) in the black tiger shrimp Penaeus monodon. In this study, a cDNA encoding another Piwi protein namely PmPiwi2 was identified by rapid amplification of cDNA ends (RACEs). PmPiwi2 was expressed solely in shrimp testis and ovary, indicating its potential role in germ cell development. Similar to PmPiwi1, PmPiwi2 also plays a part in the control of transposons as PmPiwi2-knockdown shrimp showed a significant increase in the expression of gypsy2 retrotransposon and mariner element in the testis. In addition, a reduction of sperm numbers in the spermatophore of PmPiwi2-knockdown shrimp suggests that PmPiwi2 is required for spermatogenesis similar to PmPiwi1. This study further demonstrated that apoptotic cell death was strongly detected in spermatogonia and spermatocyte cells of both PmPiwi-knockdown shrimp and thus, could be the cause of reduced sperm count. Investigation of sperm morphology showed a remarkably high proportion of abnormal sperms in the spermatophore of the PmPiwi1-knockdown shrimp, while PmPiwi2-knockdown shrimp had comparable percentage of abnormal sperms to the control shrimp. Consistently, the expression of KIFC1, a gene that is necessary for spermiogenesis was significantly reduced upon PmPiwi1 silencing, but not in the PmPiwi2-knockdown shrimp. Our results suggested that while both PmPiwis are required for the development of spermatid, only PmPiwi1 is possibly involved in the final stage of sperm maturation.


Subject(s)
DNA Transposable Elements/genetics , Germ Cells , Penaeidae/genetics , Animals , Apoptosis , DNA, Complementary , Gene Knockdown Techniques , Male
6.
J Biotechnol ; 321: 48-56, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32615142

ABSTRACT

Outbreaks of diseases caused by yellow head virus (YHV) and white spot syndrome virus (WSSV) infection in shrimp have resulted in economic losses worldwide. DsRNA-mediated RNAi has been used to control these viruses, and the best target genes for efficient inhibition of YHV and WSSV are the protease and ribonuleotide reductase small subunit (rr2), respectively. However, one dsRNA can suppress only one virus, and therefore the production of multi-target dsRNA to effectively inhibit both YHV and WSSV is needed. In this study, plasmids pETpro-rr2_one stem and pETpro-rr2_two stems were constructed to produce two different forms of multi-target dsRNA in E. coli, which were designed specifically to both YHV protease and WSSV rr2 genes. The potency of each dsRNA in inhibiting YHV and WSSV and reducing shrimp death were investigated in L. vannamei. Shrimp were injected with the dsRNAs into the hemolymph before challenge with YHV or WSSV. The results showed that both dsRNAs could inhibit the viruses, however the one stem construct was more effective than the two stems construct when shrimp were infected with WSSV. This study establishes a potential strategy for dual inhibition of YHV and WSSV for further application in shrimp aquaculture.


Subject(s)
Antiviral Agents/pharmacology , Penaeidae/virology , RNA, Double-Stranded , Roniviridae/drug effects , White spot syndrome virus 1/drug effects , Animals , Aquaculture , Plasmids/genetics , RNA Interference , RNA, Double-Stranded/genetics , RNA, Double-Stranded/pharmacology
7.
Article in English | MEDLINE | ID: mdl-32092399

ABSTRACT

Vitellogenesis is a principal process during ovarian maturation in crustaceans. This process is negatively regulated by gonad-inhibiting hormone (GIH), a neuronal peptide hormone from eyestalks. However, the detailed mechanism through which GIH regulates Vg expression is still ambiguous. In this study, suppression subtractive hybridization (SSH) under specific GIH-knockdown condition was utilized to determine the expression of genes in the ovary that may act downstream of GIH to control vitellogenin synthesis in Penaeus monodon. The total of 102 and 82 positive clones of up-regulated and down-regulated genes in GIH- knockdown shrimp were identified from the forward and reverse SSH libraries, respectively. Determination of the expression profiles of these reproduction-related genes during ovarian development revealed that the expression of calreticulin (CALR) was significantly reduced in vitellogenic ovary suggesting its role in vitellogenesis. Suppression of CALR by specific dsRNA showed elevated vitellogenin (Vg) transcript level in the ovary at day 7 post-dsRNA injection. Since CALR can bind to steroid hormone receptors and prevents the binding of the receptor to its responsive element to regulate gene expression, it is possible that CALR is an inhibitory mediator of vitellogenin synthesis via steroidal pathway. Our results posted a possible novel pathway of GIH signaling that might interfere the steroid signaling cascade to mediate Vg synthesis in the shrimp.


Subject(s)
Calreticulin/metabolism , Gene Expression Regulation/drug effects , Invertebrate Hormones/pharmacology , Vitellogenins/metabolism , Animals , Calreticulin/genetics , Penaeidae , Subtractive Hybridization Techniques , Vitellogenins/antagonists & inhibitors , Vitellogenins/genetics
8.
Fish Shellfish Immunol ; 95: 449-455, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31678535

ABSTRACT

Yellow head disease (YHD) is an infectious disease of Penaeus monodon which is caused by the yellow head virus (YHV). YHV infection invariably leads to 100% shrimp mortality within 3-5 days. Currently, an effective method to prevent or cure shrimp from YHV infection has not been elucidated. Therefore, the molecular mechanism underlying YHV infection should be examined. In this study, early endosome antigen 1 (EEA1) protein that was involved in the tethering step of the vesicle and early endosome fusion was investigated during YHV infection. The open reading frame of P. monodon EEA1 (PmEEA1) was cloned and sequenced (3000 bp). It encoded a putative protein of 999 amino acids and contained the zinc finger C2H2 domain signature at the N-terminus and the FYVE domain at the C-terminus. Suppression of PmEEA1 by specific dsRNA in shrimp showed inhibition of YHV replication after 48 h post YHV injection (hpi). On the other hand, shrimp received only NaCl without any dsRNA showed high YHV levels at approximately one hundred thousand times at 24 hpi and 48 hpi. Moreover, silencing of PmEEA1 by specific dsRNA followed by YHV challenge demonstrated a delay in shrimp mortality from 60 hpi to 168 hpi when compared to the control. These results indicated that YHV required PmEEA1 for trafficking within the infected cells, strongly suggesting that PmEEA1 may be a potential target to control and prevent YHV infection in P. monodon.


Subject(s)
Host-Pathogen Interactions , Penaeidae/virology , Roniviridae/pathogenicity , Vesicular Transport Proteins/immunology , Virus Diseases/veterinary , Animals , Penaeidae/immunology , Vesicular Transport Proteins/genetics , Virus Diseases/immunology , Virus Replication
9.
Dev Comp Immunol ; 90: 130-137, 2019 01.
Article in English | MEDLINE | ID: mdl-30227218

ABSTRACT

Argonaute (Ago) proteins, the catalytic component of an RNA-induced silencing complex (RISC) in RNA interference pathway, function in diverse processes, especially in antiviral defense and transposon regulation. So far, cDNAs encoding four members of Argonaute were found in Penaeus monodon (PmAgo1-4). Two PmAgo proteins, PmAgo1 and PmAgo3 shared high percentage of amino acid identity to Ago1 and Ago2, respectively in other Penaeid shrimps. Therefore, the possible roles of PmAgo1 and PmAgo3 upon viral infection in shrimp were characterized in this study. The level of PmAgo1 mRNA expression in shrimp hemolymph was stimulated upon YHV challenge, but not with dsRNA administration. Interestingly, silencing of either PmAgo1 or PmAgo3 using sequence-specific dsRNAs impaired the efficiency of PmRab7-dsRNA to knockdown shrimp endogenous PmRab7 expression. Inhibition of yellow head virus (YHV) replication and delayed mortality rate were also observed in both PmAgo1-and PmAgo3-knockdown shrimp. In addition, silencing of PmAgo3 transcript, but not PmAgo1, revealed partial inhibition of white spot syndrome virus (WSSV) infection and delayed mortality rate. Therefore, our study provides insights into PmAgo1and PmAgo3 functions that are involved in a dsRNA-mediated gene silencing pathway and play roles in YHV and WSSV replication in the shrimp.


Subject(s)
Argonaute Proteins/metabolism , Arthropod Proteins/metabolism , Hemolymph/metabolism , Nidovirales Infections/immunology , Penaeidae/immunology , Roniviridae/physiology , White spot syndrome virus 1/physiology , Animals , Antiviral Agents/metabolism , Argonaute Proteins/genetics , Arthropod Proteins/genetics , Cloning, Molecular , DNA Transposable Elements/genetics , Immunity, Innate , RNA Interference , RNA, Small Interfering/genetics , Virus Replication
10.
Article in English | MEDLINE | ID: mdl-30529395

ABSTRACT

Piwi proteins comprise a subfamily of Argonaute that plays a major role in germline development by association with a distinct class of small RNAs called Piwi interacting RNA (piRNA). Although the functions of Piwi in the development of germline cells as well as transposon regulation were reported in a number of mammalians and insects, developmental expression and function of Piwi subfamily in crustaceans is poorly known. This study is aimed at cloning and characterization of a Piwi cDNA in the black tiger shrimp, Penaeus monodon. The cDNA encoding a Piwi protein of P. monodon (PmPiwi1) was obtained by rapid amplification of cDNA ends (RACE). The PmPiwi1 coding cDNA contains 2811 nt encoding a putative protein of 936 amino acids, and was specifically expressed in testis and ovary, suggesting its possible function in gametogenesis. RNAi experiment showed that suppression of PmPiwi1 expression led to a significant up-regulation of retrotransposon gypsy2 and DNA element transposon mariner in shrimp testis. Investigation of the function of PmPiwi1 in spermatogenesis by sperm count showed significantly lower number of sperms in the spermatophore sac of PmPiwi1-knockdown shrimp compared with that in the control shrimp. Our study thus reported for the first time the cDNA encoding a Piwi protein in the shrimp P. monodon. Its roles in controlling transposons and spermatogenesis as implied by the results in this study will be important for understanding sperm development and could be useful for the improvement of reproduction in male shrimp in the future.


Subject(s)
Argonaute Proteins/genetics , Arthropod Proteins/genetics , DNA Transposable Elements , DNA, Complementary/genetics , Penaeidae/metabolism , Spermatogenesis/genetics , Animals , Cloning, Molecular , Female , Gene Expression Profiling , Gene Knockdown Techniques , Male , Phylogeny
11.
J Biotechnol ; 267: 63-70, 2018 Feb 10.
Article in English | MEDLINE | ID: mdl-29307838

ABSTRACT

The activation of the innate RNA interference pathway through double-stranded RNAs (dsRNAs) is one of the approaches to protecting shrimp from viruses. Previous studies have shown that injection of specific dsRNAs can successfully inhibit viral infection in shrimp. However, inhibition requires high levels of dsRNA and dsRNA stability in shrimp is limited. Virus-like particles (VLPs) have been applied to deliver nucleic acids into host cells because of the protection of dsRNAs from host endonucleases as well as the target specificity provided by VLPs. Therefore, this study aimed to develop Penaeus stylirostris densovirus (PstDNV) VLPs for dsRNA deliver to shrimp. The PstDNV capsid protein was expressed and can be self-assembled to form PstDNV VLPs. Co-expression of dsRNA-YHV-Pro and PstDNV capsid protein was achieved in the same bacterial cells, whose structure was displayed as the aggregation of VLPs by TEM. Tested for their inhibiting yellow head virus (YHV) from infecting shrimp, the dsRNA-YHV-Pro-PstDNV VLPs gave higher levels of YHV suppression and a greater reduction in shrimp mortality than the delivery of naked dsRNA-YHV-Pro. Therefore, PstDNV-VLPs are a promising vehicle for dsRNA delivery that maintains the anti-virus activity of dsRNA in shrimp over a longer period of time as compared to native dsRNAs.


Subject(s)
Densovirus/genetics , Gene Transfer Techniques , Penaeidae/virology , RNA, Double-Stranded/pharmacology , Animals , Gene Expression Regulation, Viral/genetics , RNA, Double-Stranded/genetics , Roniviridae/genetics , Roniviridae/pathogenicity , Virion/genetics
12.
Article in English | MEDLINE | ID: mdl-28842223

ABSTRACT

Molting is an important process for development and growth in arthropods. In crustaceans, molt is regulated by ecdysteroids or molting hormones that are synthesized in Y-organs. However, ecdysteroid biosynthesis pathway in crustaceans and its participating enzymes have not been well studied so far. In this study, a Rieske domain oxygenase, the enzyme that acts as cholesterol 7,8-dehydrogenase by converting cholesterol to 7-dehydrocholesterol in the first step of the ecdysteroid biosynthesis was characterized in black tiger shrimp, Penaeus monodon. A full-length cDNA of P. monodon's Rieske domain oxygenase Neverland (PmNvd) was successfully cloned. The expression of PmNvd was dominantly found in the Y-organ, and changed during molting period. The PmNvd mRNA level was low in intermolt and early premolt stages, then dramatically increased in the mid premolt stage suggesting its role in molt regulation. The function of PmNvd in the molting process was investigated by RNAi approach. Silencing of PmNvd transcript in shrimp by specific double-stranded RNA (dsNvd) led to prolonged molt duration with abnormal molting progression, i.e. the molting process got stuck at early premolt stage. In addition, 20-hydroxyecdysone titer in the hemolymph of dsNvd-injected shrimp was significantly reduced compared with that in NaCl-injected shrimp. These evidences suggested a crucial role of PmNvd in molt progression, particularly during the initiation of premolt phase via the regulation of ecdysteroid production.


Subject(s)
Molting , Oxygenases/physiology , Penaeidae/physiology , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary , Gene Silencing , Hemolymph , Oxygenases/genetics , Oxygenases/metabolism , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
13.
Fish Shellfish Immunol ; 66: 433-444, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28527895

ABSTRACT

Yellow head virus (YHV) is one of the most serious pathogens that causes worldwide shrimp production loss. It enters the cells via clathrin-mediated endocytosis and utilizes small GTPase Rab proteins such as PmRab5 and PmRab7 for intracellular trafficking. In this study, molecular cloning and functional analysis of Rab11 during YHV infection were investigated. PmRab11 cDNA was cloned by Rapid amplification of cDNA ends (RACEs). It contained two forms of sizes 1200 and 1050 bp distinct at the 5' UTR. The coding region of PmRab11 was 645 bp, encoding 214 amino acids. It also demonstrated the characteristics of Rab11 proteins containing five GTP-binding domains, five Rab family domains, four Rab subfamily domains and a prenylation site at the C-terminus. Suppression of PmRab11 using dsRNA-PmRab11 either before or after YHV-challenge resulted in significant inhibition of YHV levels in the hemocytes and viral release in the supernatant in both mRNA and protein levels. In addition, the silencing effect of PmRab11 in YHV-infected shrimps resulted in a delay in shrimp mortality for at least 2 days. Immunofluorescence study showed co-localization between PmRab11 and YHV at 24-72 h post YHV-challenge. In contrast, the co-localization signals were absence in the PmRab11 knockdown hemocytes and the YHV signals accumulated at the perinuclear region at 24 h post YHV-challenge. Then, accumulation of YHV was hardly observed after 48-72 h. These results suggested that PmRab11 is required for YHV infection in shrimp.


Subject(s)
Arthropod Proteins/genetics , Penaeidae/genetics , Penaeidae/virology , Roniviridae/physiology , rab GTP-Binding Proteins/genetics , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , rab GTP-Binding Proteins/chemistry , rab GTP-Binding Proteins/metabolism
14.
J Biotechnol ; 228: 95-102, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27140871

ABSTRACT

Protection of shrimp from yellow head virus (YHV) infection has been demonstrated by injection and oral delivery of dsRNA-YHV protease gene (dsYHV) or shrimp endogenous gene (dsRab7). However, to achieve complete viral suppression and to prolong dsRNA activity, the development of an effective dsRNA delivery system is required. In this study, four cationic liposomes were synthesized and tested for their ability to increase dsRNA efficiency. The results demonstrated that entrapping dsYHV in a cholesterol-based cationic liposome gave the best protection against YHV infection when compared with other cationic lipids. The cholesterol-based cationic liposome-dsYHV (Chol-dsYHV) complex conferred YHV protection in a dose-dependent manner. Injection with Chol-dsYHV at 0.05µg dsYHV/g shrimp could give comparable level of YHV protection to the injection with 1.25µg naked dsYHV/g shrimp. The shrimp injected with Chol- dsYHV at 1.25µg dsRNA/g shrimp showed only 50% mortality at 60days post injection whereas the naked dsYHV at the same concentration gave 90% mortality. Thus, the liposome-entrapped dsYHV could lower an effective dsRNA concentration in viral protection and prolong dsRNA activity. In addition, encapsulating dsRab7 in the cholesterol-based cationic liposome could protect the dsRab7 from enzymatic digestion, and continuous feeding the shrimp with the diet formulated with the liposome-entrapped dsRab7 for 4days in the total of 960µg dsRab7/g shrimp could enhance YHV protection efficiency compared with the naked dsRab7. Our studies reveal that cholesterol-based cationic liposome is a promising dsRNA carrier to enhance dsRNA efficiency in both injection and oral delivery systems.


Subject(s)
Cholesterol/chemistry , Liposomes/pharmacology , Nidovirales Infections , Penaeidae/virology , RNA, Double-Stranded/metabolism , Roniviridae/drug effects , Animals , Liposomes/administration & dosage , Nidovirales Infections/drug therapy , Nidovirales Infections/prevention & control , Nidovirales Infections/veterinary , Nidovirales Infections/virology , RNA Interference/drug effects , Roniviridae/genetics , Virus Replication/drug effects
15.
J Invertebr Pathol ; 134: 23-26, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26767321

ABSTRACT

Penaeus monodon densovirus (PmDNV) is one of the major causes of stunted shrimp in the aquaculture industry in Thailand. Significant reductions in levels of PmDNV as assessed by PCR analysis of shrimp hepatopancreas were seen in both prophylactic and curative experiments after feeding shrimp with a formulated diet containing mixed inactivated bacteria harboring dsRNAs corresponding to the PmDNV ns1 and vp genes. Significant reductions of approximately 88% (prophylactic) and 64% (curative) of PmDNV were observed, suggesting that this diet has a high potential for application in commercial aquaculture for reducing PmDNV associated stunted growth of shrimp.


Subject(s)
Densovirus/physiology , Penaeidae/virology , RNA Interference , RNA, Double-Stranded/pharmacology , Animals , Aquaculture/methods , Biological Control Agents , Densovirus/genetics , Microbial Viability , Penaeidae/physiology , RNA, Double-Stranded/metabolism , Thailand , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics
16.
Fish Shellfish Immunol ; 44(1): 241-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25724627

ABSTRACT

Identification and characterization of the RNAi-related genes is the key to understanding RNAi mechanism in shrimp. In this study, we have identified and characterized a novel putative RNA helicase gene, Mj-mov-10 from the kuruma shrimp, Marsupenaeus japonicus and its implication in shrimp RNAi was demonstrated. The full-length Mj-mov-10 gene contained 3536bp, including 239 bp of 5'UTR, 2895 bp of the open reading frame (ORF) and 402bp of 3'UTR, respectively. An ORF of Mj-mov-10 could be translated to a 109-kDa protein which consists of a single helicase core domain containing seven signature motifs of the RNA helicase superfamily-1. Mj-MOV-10 protein shared 47% and 40% identity with mammalian MOV-10 and plant SDE3, respectively. Expression of Mj-mov-10 gene was significantly up-regulated upon dsRNA and white spot syndrome virus (WSSV) challenge. In vivo gene knockdown of Mj-mov-10 resulted in an increase of a susceptibility of shrimp to WSSV infection. Our results implied the functional significance of Mj-MOV-10 in dsRNA-mediated gene silencing and antiviral defense mechanism in shrimp.


Subject(s)
Arthropod Proteins/genetics , Penaeidae/genetics , RNA Helicases/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Molecular Sequence Data , RNA Interference
17.
J Biosci Bioeng ; 120(4): 470-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25754065

ABSTRACT

Strong promoter is an essential factor for production of recombinant protein in various expression systems including Bacillus subtilis. In this study, we described a strategy to improve the expression efficiency using synthetic double promoter. Assembly of the conserved elements from σ(B)- and σ(A)-dependent promoters constitutively improved the yield of recombinant protein approximately 2-3-fold in both exponential and stationary growth phase. The synergistic effect in the double promoter was observed only when σ(B)-promoter was located upstream to σ(A)-promoter but independent to its orientation. A conserved element in either -10 or -35 box of σ(B)-promoter is sufficient to promote the synergism. Hence, this simple strategy of promoter engineering could be an effective way to generate a pool of strong constitutive promoters applicable for heterologous protein expression in B. subtilis in the future.


Subject(s)
Bacillus subtilis/genetics , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Sigma Factor/genetics , Base Sequence , Conserved Sequence/genetics , Recombinant Proteins/analysis
18.
Aquaculture ; 435: 480-487, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-32287457

ABSTRACT

Viral disease caused by the Yellow head virus (YHV) had great impact on economic loss in the aquaculture industry. Prevention or curing YHV disease is still not possible due to the lack of understanding of the basic mechanisms of YHV infection. In this report, the endocytosis inhibitors (chlorpromazine (CPZ), amiloride and methyl-ß-cyclodextrin (MßCD)) were used to identify the cellular entry pathway of YHV. Pretreating shrimp with CPZ but not amiloride or MßCD followed by YHV challenge resulted in a significant reduction of YHV levels, suggesting that YHV entered the shrimp cells via clathrin-mediated endocytosis. Next, the major component of the clathrin-coated vesicle, Penaeus monodon clathrin heavy chain (PmCHC) was cloned and characterized. The complete coding sequence of PmCHC is 5055 bp encoding a putative protein of 1684 amino acids. Specific silencing of PmCHC mRNA by dsRNA-PmCHC showed an inhibition of YHV replication for 48 h post YHV injection as well as exhibiting a delay in shrimp mortality. These results indicated that PmCHC was an essential component for YHV infection of shrimp cells.

19.
Fish Shellfish Immunol ; 42(2): 280-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25463288

ABSTRACT

Argonaute is a key protein of the small-RNA guided gene regulation process. The Argonaute family is generally divided into two subfamilies; AGO and PIWI. In this study, a cDNA encoding a novel type of Argonaute (PmAgo4) in the black tiger shrimp Penaeus monodon was identified and characterized. PmAgo4 cDNA contained an open reading frame of 2433 nucleotides that can be translated into a deduced amino acid with the conserved PAZ and PIWI domains. PmAgo4 was phylogenetically clustered with the AGO subfamily while exhibited a gonad-specific expression pattern similar to that of proteins in the PIWI subfamily. The expression of PmAgo4 did not change significantly in response to either double-stranded RNA or yellow head virus injection suggesting that PmAgo4 may not be the main AGO proteins that play a role in dsRNA-mediated gene silencing or antiviral defense. Interestingly, PmAgo4 appeared to participate in the control of transposons since the activation of both DNA transposon and retrotransposon was detected in the testis of PmAgo4-knockdown shrimp. Our study thus provided the first evidence for an unusual type of the AGO proteins that was predominantly expressed in shrimp gonad and implication of its role in protecting the shrimp genome against an invasion of transposons.


Subject(s)
Argonaute Proteins/genetics , Arthropod Proteins/genetics , DNA Transposable Elements , Gene Expression Regulation , Penaeidae/genetics , Amino Acid Sequence , Animals , Argonaute Proteins/metabolism , Arthropod Proteins/metabolism , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Gonads/metabolism , Molecular Sequence Data , Penaeidae/immunology , Penaeidae/metabolism , Penaeidae/virology , Phylogeny , Polymerase Chain Reaction , RNA, Double-Stranded/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Roniviridae/physiology
20.
Article in English | MEDLINE | ID: mdl-24937259

ABSTRACT

Red pigment-concentrating hormone (RPCH) is a member of the AKH/RPCH peptide family present mainly in crustaceans and insects. Insect AKH is responsible for metabolic functions whereas RPCH plays a major role in the aggregation of red chromatophores in crustaceans. In this study, a full-length cDNA of RPCH of the black tiger shrimp, Penaeus monodon (PmRPCH) was cloned by Rapid Amplification of cDNA Ends strategies from the eyestalk RNA. A 770 bp full-length PmRPCH cDNA harbored 279 bp of an open reading frame encoding a signal peptide of 21 amino acid residues, an 8 amino acid mature RPCH peptide, followed by 61 amino acid residues of a RPCH precursor-related peptide. The highest levels of PmRPCH mRNA expression were detected in eyestalks while lower expression was found in other nervous tissues i.e. brain, thoracic ganglia and abdominal nerve cord. Expression of PmRPCH was transiently stimulated upon hypersalinity change within 12 h suggesting its osmoregulatory function. During the molting cycle, PmRPCH in the eyestalk was expressed at the lowest level in the early pre-molt stage (D0), then gradually increased over the pre-molt period and reached the highest level in the late pre-molt (D4) and post-molt (AB) stages. RPCH peptide at a dose of 100 pmol also increased gill Na(+)/K(+) ATPase activity in 36-48 h after injection. However, PmRPCH did not accelerate the duration of molting cycle. Our results provide the first evidence on the potential function of PmRPCH in molting, probably by mediating hemolymph osmolality and ion transport enzymes during the late pre-molt stage.


Subject(s)
Molting/genetics , Oligopeptides/genetics , Osmoregulation , Penaeidae/physiology , Pyrrolidonecarboxylic Acid/analogs & derivatives , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Molting/physiology , Oligopeptides/metabolism , Penaeidae/genetics , Protein Sorting Signals/genetics , Pyrrolidonecarboxylic Acid/metabolism , Sequence Alignment , Water-Electrolyte Balance
SELECTION OF CITATIONS
SEARCH DETAIL
...