Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Radiat Biol ; 99(5): 760-768, 2023.
Article in English | MEDLINE | ID: mdl-36352506

ABSTRACT

PURPOSE: We studied the effects of computed tomography (CT) scan irradiation on proliferation and differentiation of human embryonic stem cells (hESCs). It was reported that hESC is extremely radiosensitive; exposure of hESC in cultures to 1 Gy of ionizing radiation (IR) results in massive apoptosis of the damaged cells and, thus, they are eliminated from the cultures. However, after recovery the surviving cells proliferate and differentiate normally. We hypothesized that IR-exposed hESC may still have growth rate disadvantage when they proliferate or differentiate in the presence of non-irradiated hESC, as has been shown for mouse hematopoietic stem cells in vivo. MATERIALS AND METHODS: To study such competitive proliferation and differentiation, we obtained cells of H9 hESC line that stably express green fluorescent protein (H9GFP). Irradiated with 50 mGy or 500 mGy H9GFP and non-irradiated H9 cells (or vice versa) were mixed and allowed to grow under pluripotency maintaining conditions or under conditions of directed differentiation into neuronal lineage for several passages. The ratio of H9GFP to H9 cells was measured after every passage or approximately every week. RESULTS: We observed competition of H9 and H9GFP cells; we found that the ratio of H9GFP to H9 cells increased with time in both proliferation and differentiation conditions regardless of irradiation, i.e. the H9GFP cells in general grew faster than H9 cells in the mixtures. However, we did not observe any consistent changes in the relative growth rate of irradiated versus non-irradiated hESC. CONCLUSIONS: We conclude that population of pluripotent hESC is very resilient; while damaged cells are eliminated from colonies, the surviving cells retain their pluripotency, ability to differentiate, and compete with non-irradiated isogenic cells. These findings are consistent with the results of our previous studies, and with the concept that early in pregnancy omnipotent cells injured by IR can be replaced by non-damaged cells with no impact on embryo development.


Subject(s)
Human Embryonic Stem Cells , Humans , Animals , Mice , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/radiation effects , Embryonic Stem Cells/metabolism , Cell Differentiation , Cell Proliferation/radiation effects , Radiation, Ionizing
2.
Radiat Res ; 193(5): 460-470, 2020 05.
Article in English | MEDLINE | ID: mdl-32216708

ABSTRACT

Human embryonic brain development is highly sensitive to ionizing radiation. However, detailed information on the mechanisms of this sensitivity is not available due to limited experimental data. In this study, differentiation of human embryonic stem cells (hESCs) to neural lineages was used as a model for early embryonic brain development to assess the effect of exposure to low (17 mGy) and high (572 mGy) doses of radiation on gene expression. Transcriptomes were assessed using RNA sequencing during neural differentiation at three time points in control and irradiated samples. The first time point was when the cells were still pluripotent (day 0), the second time point was during the stage of embryoid body formation (day 6), and the third and final time point was during the stage of neural rosette formation (day 10). Analysis of the transcriptomes revealed neurodifferentiation in both the control and irradiated cells. Low-dose irradiation did not result in changes in gene expression at any of the time points, whereas high-dose irradiation resulted in downregulation of some major neurodifferentiation markers on days 6 and 10. Gene ontology analysis showed that pathways related to nervous system development, neurogenesis and generation of neurons were among the most affected. Expression of such key regulators of neuronal development as NEUROG1, ARX, ASCL1, RFX4 and INSM1 was reduced more than twofold. In conclusion, exposure to a 17 mGy low dose of radiation was well tolerated by hESCs while exposure to 572 mGy significantly affected their genetic reprogramming into neuronal lineages.


Subject(s)
Cell Differentiation/radiation effects , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/radiation effects , Transcriptome/radiation effects , Human Embryonic Stem Cells/cytology , Humans , Neurogenesis/radiation effects , Time Factors , Tomography, X-Ray Computed/adverse effects
3.
Int J Mol Sci ; 20(16)2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31405104

ABSTRACT

We studied the effect of radiation from computed tomography (CT) scans on differentiation of human embryonic stem cells (hESCs) into neuronal lineage. hESCs were divided into three radiation exposure groups: 0-dose, low-dose, or high-dose exposure. Low dose was accomplished with a single 15 mGy CT dose index (CTDI) CT scan that approximated the dose for abdominal/pelvic CT examinations in adults while the high dose was achieved with several consecutive CT scans yielding a cumulative dose of 500 mGy CTDI. The neural induction was characterized by immunocytochemistry. Quantitative polymerase chain reaction (qPCR) and Western blots were used to measure expression of the neuronal markers PAX6 and NES and pluripotency marker OCT4. We did not find any visible morphological differences between neural precursors from irradiated and non-irradiated cells. However, quantitative analyses of neuronal markers showed that PAX6 expression was reduced following exposure to the high dose compared to 0-dose controls, while no such decrease in PAX6 expression was observed following exposure to the low dose. Similarly, a statistically significant reduction in expression of NES was observed following high-dose exposure, while after low-dose exposure, a modest but statistically significant reduction in NES expression was only observed on Day 8 of differentiation. Further studies are warranted to elucidate how lower or delayed expression of PAX6 and NES can impact human fetal brain development.


Subject(s)
Human Embryonic Stem Cells/radiation effects , Neural Stem Cells/radiation effects , Neurogenesis/radiation effects , Tomography, X-Ray Computed/adverse effects , Cell Line , Down-Regulation/radiation effects , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , PAX6 Transcription Factor/genetics , Radiation Dosage , Radiation, Ionizing
4.
Mutat Res ; 803-805: 22-25, 2017 10.
Article in English | MEDLINE | ID: mdl-28837838

ABSTRACT

We assessed single nucleotide variations (SNVs) between individual cells in two cancer cell lines; DU145, from brain metastasis of prostate tumor with deficient mismatch repair; and HT1080, a fibrosarcoma cell line. Clones of individual cells were isolated, and sequenced using Ion Ampliseq comprehensive cancer panel that covered the exomes of 409 oncogenes and tumor suppressor genes. Five clones of DU145 and four clones of HT1080 cells were analyzed. We found from 7 to 12 unique SNVs between DU145 clones, while HT1080 clones showed no more than one unique SNV. We then sub-cloned individual cells from some of these isolated clones of DU145 and HT1080 cells. The sub-clones were expanded from a single cell to approximately one million cells after about 20 cell divisions. The sub-clones of DU145 cells had from one to four new unique SNVs within the sequenced regions. No unique SNVs were found between sub-clones of HT1080 cells. Our data demonstrate that the extent of genetic variation at the single nucleotide level in cultured cancer cells is significantly affected by the status of the DNA mismatch repair system.


Subject(s)
DNA Mismatch Repair , Fibrosarcoma/genetics , Polymorphism, Single Nucleotide , Cell Line, Tumor , Cloning, Molecular , Humans
5.
Sci Rep ; 7: 43995, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28266624

ABSTRACT

We studied the effect of ionizing radiation (IR) on continuous growth of seven hESC lines. Cells were exposed to 0, 0.2, or 1 Gy of X-rays, and the growth rates of cell populations were assessed by measuring areas of the same individual colonies versus time. The population doubling times (DT) of sham-irradiated cells varied from 18.9 to 28.7 hours for different cell lines. All cell lines showed similar reaction to IR, i.e. cell populations dropped within 24-48 hours post IR; after that they recovered and grew with the same rate as the sham-irradiated cells. The relative cell survival (RCS), i.e. the ratio of normalized cell population in the irradiated samples to that of the sham-irradiated ones varied from 0.6 to 0.8 after 0.2 Gy, and from 0.1 to 0.2 after 1 Gy IR for different cell lines. We found that the RCS values of hESC lines correlated directly with their DT, i.e. the faster cells grow the more radiosensitive they are. We also found that DT and RCS values of individual colonies varied significantly within all hESC lines. We believe that the method developed herein can be useful for assessing other cytotoxic insults on cultures of hESC.


Subject(s)
Cell Proliferation/radiation effects , Human Embryonic Stem Cells/physiology , Human Embryonic Stem Cells/radiation effects , Radiation, Ionizing , Cell Survival/radiation effects , Cells, Cultured , Humans
6.
Int J Mol Sci ; 17(1)2016 Jan 02.
Article in English | MEDLINE | ID: mdl-26729112

ABSTRACT

Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.


Subject(s)
Chromatin/ultrastructure , DNA Breaks, Double-Stranded/radiation effects , Human Embryonic Stem Cells/radiation effects , Cell Differentiation , Cell Line , Chromatin/radiation effects , Heterochromatin/radiation effects , Heterochromatin/ultrastructure , Human Embryonic Stem Cells/cytology , Humans , Radiation, Ionizing
7.
Stem Cells Int ; 2016: 1346521, 2016.
Article in English | MEDLINE | ID: mdl-26709353

ABSTRACT

Ionizing radiation (IR) is a known mutagen that is widely employed for medical diagnostic and therapeutic purposes. To study the extent of genetic variations in DNA caused by IR, we used IR-sensitive human embryonic stem cells (hESCs). Four hESC cell lines, H1, H7, H9, and H14, were subjected to IR at 0.2 or 1 Gy dose and then maintained in culture for four days before being harvested for DNA isolation. Irradiation with 1 Gy dose resulted in significant cell death, ranging from 60% to 90% reduction in cell population. Since IR is often implicated as a risk for inducing cancer, a primer pool targeting genomic "hotspot" regions that are frequently mutated in human cancer genes was used to generate libraries from irradiated and control samples. Using a semiconductor-based next-generation sequencing approach, we were able to consistently sequence these samples with deep coverage for reliable data analysis. A possible rare nucleotide variant was identified in the KIT gene (chr4:55593481) exclusively in H1 hESCs irradiated with 1 Gy dose. More extensive further studies are warranted to assess the extent and distribution of genetic changes in hESCs after IR exposure.

8.
Int J Radiat Biol ; 88(12): 954-60, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22676300

ABSTRACT

PURPOSE: Human embryonic stem cells (hESC) hold a great potential for regenerative medicine because, in principle, they can differentiate into any cell type found in the human body. In addition, studying the effect of ionizing radiation (IR) on hESC may provide valuable information about the response of human cells to IR exposure in their most naive state, as well as the consequences of IR exposure on the development of organisms. However, the effect of IR, in particular radionuclide uptake, on the pluripotency, proliferation and survival of hESC has not been extensively studied. METHODS: In this study we treated cultured hESC with 5-[(125)I]iodo-2'-deoxyuridine ((125)IdU), a precursor of DNA synthesis. Then we measured the expansion of colonies and expression of pluripotency markers in hESC. RESULTS: We found that uptake of (125)IdU was similar in both hESC and HT1080 human fibrosarcoma cells. However, treatment with 0.1 µCi/ml (125)IdU for 24 hours resulted in complete death of the hESC population; whereas HT1080 cancer cells continued to grow. Treatment with a 10-fold lower dose (125)IdU (0.01 µCi/ml) resulted in colonies of hESC becoming less defined with numerous cells growing in monolayer outside of the colonies showing signs of differentiation. Then we analyzed the expression of pluripotency markers (octamer-binding transcription factor 4 [Oct-4] and stage-specific embryonic antigen-4 [SSEA4]) in the surviving hESC. We found that hESC in the surviving colonies expressed pluripotency markers at levels comparable with those in the non-treated controls. CONCLUSIONS: Our results provide important initial insights into the sensitivity of hESC to IR, and especially that produced by the decay of an internalized radionuclide.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/radiation effects , Idoxuridine/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/radiation effects , Biological Transport , Cell Line , Cell Proliferation/radiation effects , Electrons , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Humans , Idoxuridine/pharmacology , Iodine Radioisotopes/metabolism , Iodine Radioisotopes/pharmacology , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/metabolism
9.
Stem Cells Int ; 2012: 634914, 2012.
Article in English | MEDLINE | ID: mdl-22619683

ABSTRACT

The sodium-iodine symporter (NIS) is expressed on the cell membrane of many thyroid cancer cells, and is responsible for the radioactive iodine accumulation. However, treatment of anaplastic thyroid cancer is ineffective due to the low expression of NIS on cell membranes of these tumor cells. Human embryonic stem cells (ESCs) provide a potential vehicle to study the mechanisms of NIS expression regulation during differentiation. Human ESCs were maintained on feeder-independent culture conditions. RT-qPCR and immunocytochemistry were used to study differentiation marker expression, (125)I uptake to study NIS function. We designed a two-step protocol for human ESC differentiation into thyroid-like cells, as was previously done for mouse embryonic stem cells. First, we obtained definitive endoderm from human ESCs. Second, we directed differentiation of definitive endoderm cells into thyroid-like cells using various factors, with thyroid stimulating hormone (TSH) as the main differentiating factor. Expression of pluripotency, endoderm and thyroid markers and (125)I uptake were monitored throughout the differentiation steps. These approaches did not result in efficient induction of thyroid-like cells. We conclude that differentiation of human ESCs into thyroid cells cannot be induced by TSH media supplementation alone and most likely involves complicated developmental patterns that are yet to be understood.

10.
PLoS One ; 7(2): e31028, 2012.
Article in English | MEDLINE | ID: mdl-22347422

ABSTRACT

MicroRNAs (miRNA) comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR) causes DNA damage and generally triggers cellular stress response. However, the role of miRNAs in IR-induced response in human embryonic stem cells (hESC) has not been defined yet. Here, by using system biology approaches, we show for the first time, that miRNAome undergoes global alterations in hESC (H1 and H9 lines) after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line--dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes), and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-, cell cycle-, ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response, and identify novel molecular targets of radiation in hESC.


Subject(s)
Embryonic Stem Cells/radiation effects , MicroRNAs/physiology , Radiation, Ionizing , Cell Cycle/genetics , Cell Differentiation/genetics , Dose-Response Relationship, Radiation , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Humans , Ion Transport/genetics , Kinetics
11.
Mutat Res ; 709-710: 40-8, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21376742

ABSTRACT

One of the key consequences of exposure of human cells to genotoxic agents is the activation of DNA damage responses (DDR). While the mechanisms underpinning DDR in fully differentiated somatic human cells have been studied extensively, molecular signaling events and pathways involved in DDR in pluripotent human embryonic stem cells (hESC) remain largely unexplored. We studied changes in the human genome-wide transcriptome of H9 hESC line following exposures to 1Gy of gamma-radiation at 2h and 16h post-irradiation. Quantitative real-time PCR was performed to verify the expression data for a subset of genes. In parallel, the cell growth, DDR kinetics, and expression of pluripotency markers in irradiated hESC were monitored. The changes in gene expression in hESC after exposure to ionizing radiation (IR) are substantially different from those observed in somatic human cell lines. Gene expression patterns at 2h post-IR showed almost an exclusively p53-dependent, predominantly pro-apoptotic, signature with a total of only 30 up-regulated genes. In contrast, the gene expression patterns at 16h post-IR showed 354 differentially expressed genes, mostly involved in pro-survival pathways, such as increased expression of metallothioneins, ubiquitin cycle, and general metabolism signaling. Cell growth data paralleled trends in gene expression changes. DDR in hESC followed the kinetics reported for human somatic differentiated cells. The expression of pluripotency markers characteristic of undifferentiated hESC was not affected by exposure to IR during the time course of our analysis. Our data on dynamics of transcriptome response of irradiated hESCs may provide a valuable tool to screen for markers of IR exposure of human cells in their most naive state; thus unmasking the key elements of DDR; at the same time, avoiding the complexity of interpreting distinct cell type-dependent genotoxic stress responses of terminally differentiated cells.


Subject(s)
Embryonic Stem Cells/radiation effects , Gene Expression Profiling , Cell Cycle/radiation effects , Cell Line , Cell Proliferation/radiation effects , Cell Survival/radiation effects , DNA Damage/radiation effects , Genes, p53 , Humans , Polymerase Chain Reaction , Signal Transduction
12.
Oligonucleotides ; 20(6): 277-84, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20946012

ABSTRACT

The delivery of oligodeoxynucleotides (ODNs) into cells is widely utilized for antisense, antigene, aptamer, and similar approaches to regulate gene and protein activities based upon the ODNs' sequence-specific recognition. Short pieces of DNA can also be generated in biological processes, for example, after degradation of viral or bacterial DNA. However, the mechanisms that regulate intracellular trafficking and localization of ODNs are not fully understood. Here we study the effects of major transporters of microRNA, exportin-1 (Exp1) and exportin-5 (Exp5), on the transport of single-stranded ODNs in and out of the nucleus. For this, we employed a fluorescent microscopy-based assay to quantitatively measure the redistribution of ODNs between the nucleus and cytoplasm of live cells. By measuring the fluorescent signal of the nuclei we observed that after delivery into cells via cationic liposomes ODNs rapidly accumulated inside nuclei. However, after removal of the ODN/liposome containing media, we found re-localization of ODNs from the nuclei to cytoplasm of the cells over the time course of several hours. Downregulation of the Exp5 gene by siRNA resulted in a slight increase of ODN uptake into the nucleus, but the kinetics of ODN efflux to the cytoplasm was not affected. Inhibition of Exp1 with leptomycin B somewhat slowed down the clearance of ODNs from the nucleus; however, within 6 hours most of the ODN were still being cleared form the nucleus. ODNs that could form intramolecular G-quadruplex structures behaved differently. They also accumulated in nuclei, although at a lesser extent than unstructured ODN, but they remained there for up to 20 hours after transfection, causing significant cell death. We conclude that Exp1 and Exp5 are not the major transporters of our ODNs out of the nucleus, and that the transport of ODNs is strongly affected by their secondary structure.


Subject(s)
Cell Nucleus/metabolism , DNA/chemistry , Karyopherins/metabolism , Base Sequence , Biological Transport , DNA Primers , Down-Regulation , Karyopherins/genetics , Nucleic Acid Conformation , Reverse Transcriptase Polymerase Chain Reaction
13.
Gene ; 455(1-2): 8-15, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20123005

ABSTRACT

Human embryonic stem cells (hESC) are capable to give rise to all cell types in the human body during the normal course of development. Therefore, these cells hold a great promise in regenerative cell replacement based therapeutical approaches. However, some controversy exists in literature concerning the ultimate fate of hESC after exposure to genotoxic agents, in particular, regarding the effect of DNA damaging insults on pluripotency of hESC. To comprehensively address this issue, we performed an analysis of the expression of marker genes, associated with pluripotent state of hESC, such as Oct-4, Nanog, Sox-2, SSEA-4, TERT, TRA-1-60 and TRA-1-81 up to 65h after exposure to ionizing radiation (IR) using flow cytometry, immunocytochemistry and quantitative real-time polymerase chain reaction techniques. We show that irradiation with relatively low doses of gamma-radiation (0.2Gy and 1Gy) does not lead to loss of expression of the pluripotency-associated markers in the surviving hESC. While changes in the levels of expression of some of the pluripotency markers were observed at different time points after IR exposure, these alterations were not persistent, and, in most cases, the expression of the pluripotency-associated markers remained significantly higher than that observed in fully differentiated human fibroblasts, and in hESCs differentiated into definitive endodermal lineage. Our data suggest that exposure of hESC to relatively low doses of IR as a model genotoxic agent does not significantly affect pluripotency of the surviving fraction of hESC.


Subject(s)
Embryo, Mammalian/cytology , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/radiation effects , Biomarkers/metabolism , Cell Count , Cell Differentiation , Cell Survival , Cells, Cultured , Embryonic Stem Cells/radiation effects , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Flow Cytometry , Humans , Radiation, Ionizing , Reverse Transcriptase Polymerase Chain Reaction , Stage-Specific Embryonic Antigens/genetics
14.
Radiat Res ; 168(4): 493-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17903033

ABSTRACT

DNA double-strand breaks are thought to precede the formation of most radiation-induced micronuclei. Phosphorylation of the histone H2AX is an early indicator of DNA double-strand breaks. Here we studied the phosphorylation status of the histone H2AX in micronuclei after exposure of cultured cells to ionizing radiation or treatment with colchicine. In human astrocytoma SF268 cells, after exposure to gamma radiation, the proportion of gamma-H2AX-positive to gamma-H2AX-negative micronuclei increases. The majority of the gamma-H2AX-positive micronuclei are centromere-negative. The number of gamma-H2AX-positive micronuclei continues to increase even 24 h postirradiation when most gamma-H2AX foci in the main nucleus have disappeared. In contrast, in normal human fibroblasts (BJ), the proportion of gamma-H2AX-positive to gamma-H2AX-negative micronuclei remains constant, and the majority of the centromere-negative cells are gamma-H2AX-negative. Treatment of both cell lines with colchicine results in mostly centromere-positive, gamma-H2AX-negative micronuclei. Immunostaining revealed co-localization of MDC1 and ATM with gamma-H2AX foci in both main nuclei and micronuclei; however, other repair proteins, such as Rad50, 53BP1 and Rad17, that co-localized with gamma-H2AX foci in the main nuclei were not found in the micronuclei. Combination of the micronucleus assay with gamma-H2AX immunostaining provides new insights into the mechanisms of the formation and fate of micronuclei.


Subject(s)
Histones/metabolism , Micronuclei, Chromosome-Defective/radiation effects , Cells, Cultured , Centromere/radiation effects , Colchicine/pharmacology , DNA Breaks, Double-Stranded , Humans , Phosphorylation
16.
Ann N Y Acad Sci ; 1058: 140-50, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16394133

ABSTRACT

Decay of an Auger-electron-emitting radioisotope can knock out a targeted gene by producing DNA strand breaks within its sequence. For delivery of Auger emitters to genomic targets we used triplex-forming oligonucleotides (TFOs) that bind specifically to their target sequences by forming hydrogen bonds within the major groove of the target duplex. We named this approach antigene radiotherapy. In our previous studies, we demonstrated that (125)I-labeled TFOs targeted against the human MDR1 gene produced sequence-specific double strand breaks (DSBs) within this gene in live cultured cells. We also found that conjugation of TFO with nuclear localization signal peptide significantly increased the efficiency of targeting. To screen the wide variety of possible TFO modifications a sensitive and robust assay of DNA damage produced by such (125)I-TFOs would be highly desirable. Recently we showed a direct correspondence between the number of decays of (125)I incorporated into DNA as (125)I-UdR and the number of histone gamma-H2AX foci per cell revealed by staining with gamma-H2AX antibodies. The technique is 100-fold more sensitive than other DSB-detection methods, thus it is possible to detect as few as an average of 0.5 DSBs per cell in a population of cultured cells. Here we applied this method to evaluate the intracellular DNA damage produced by two (125)I-TFOs, the first targeted to the single-copy HPRT gene ((125)I-TFO-HPRT) and second to a multicopy repeated sequence (GA)(n) that occurs almost 7000 times in the human genome ((125)I-TFO-GA). DNA damage produced by (125)I-TFO was assessed by staining the cells with gamma-H2AX antibody followed by either direct counting gamma-H2AX foci or by measuring the gamma-H2AX signal using flow cytometry. Both methods produced quantitatively close results; (125)I-TFO-GA with multiple nuclear targets produced on average 1.93 times more gamma-H2AX foci per cell and generated 1.96 times increase in gamma-H2AX antibody staining signal than (125)I-TFO-HPRT with a single target. The gamma-H2AX-based assay requires considerably less time and effort than the direct measurement of DSB by Southern hybridization applied previously. Therefore, we believe that gamma-H2AX-based measurement of DNA damage could be useful for evaluation and cellular DNA accessibility by (125)I-labeled DNA targeting agents.


Subject(s)
Cell Nucleus/metabolism , DNA Damage , Genetic Therapy , Iodine Radioisotopes/chemistry , Oligonucleotides/chemistry , Base Sequence , Cell Line, Tumor , Electrons , Flow Cytometry , Gene Transfer Techniques , Histones/chemistry , Histones/metabolism , Humans , Models, Biological , Molecular Sequence Data
17.
Int J Radiat Biol ; 80(11-12): 927-31, 2004.
Article in English | MEDLINE | ID: mdl-15764404

ABSTRACT

PURPOSE: Triplex-forming oligodeoxyribonucleotides (TFOs) bind specifically to their target sequences by forming hydrogen bonds within the major groove of the target duplex. When labeled with Auger-electron-emitting radioisotopes, TFOs are able to damage the target gene in a process named antigene radiotherapy. We compared radiotoxicity and the amount of DNA damage produced within cultured cells by two 125I-labeled TFOs, one with a single target in the genome and another with multiple targets. MATERIALS AND METHODS: Radiotoxicity was measured by clonogenic assay while DNA damage was assessed by the number of histone gamma-H2AX foci formed at the sites of DNA double strand breaks (DSBs). RESULTS: The TFO with multiple nuclear targets was 1.7 fold more radiotoxic and produced on average 1.9 fold more gamma-H2AX foci per cell than the TFO with a single target. CONCLUSION: Since the two methods gave comparable results, measuring the number of gamma-H2AX foci per decay may be a useful procedure for the assessment of cytotoxic effects and the intranuclear localization of radionuclides when they produce DSBs.


Subject(s)
Cell Survival/radiation effects , DNA Damage , DNA/adverse effects , DNA/radiation effects , Fibrosarcoma/pathology , Iodine Radioisotopes/adverse effects , Cell Line , Cell Line, Tumor/radiation effects , DNA/ultrastructure , Dose-Response Relationship, Radiation , Fibrosarcoma/genetics , Fibrosarcoma/metabolism , Histones/genetics , Histones/metabolism , Humans , Radiation Dosage , Radiopharmaceuticals/adverse effects
18.
J Biol Chem ; 277(14): 11756-64, 2002 Apr 05.
Article in English | MEDLINE | ID: mdl-11821407

ABSTRACT

In mammalian cells, nonhomologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair. Rejoining of DSB produced by decay of (125)I positioned against a specific target site in plasmid DNA via a triplex-forming oligonucleotide (TFO) was investigated in cell-free extracts from Chinese hamster ovary cells. The efficiency and quality of NHEJ of the "complex" DSB induced by the (125)I-TFO was compared with that of "simple" DSB induced by restriction enzymes. We demonstrate that the extracts are indeed able to rejoin (125)I-TFO-induced DSB, although at approximately 10-fold decreased efficiency compared with restriction enzyme-induced DSB. The resulting spectrum of junctions is highly heterogeneous exhibiting deletions (1-30 bp), base pair substitutions, and insertions and reflects the heterogeneity of DSB induced by the (125)I-TFO within its target site. We show that NHEJ of (125)I-TFO-induced DSB is not a random process that solely depends on the position of the DSB but is driven by the availability of microhomology patches in the target sequence. The similarity of the junctions obtained with the ones found in vivo after (125)I-TFO-mediated radiodamage indicates that our in vitro system may be a useful tool to elucidate the mechanisms of ionizing radiation-induced mutagenesis and repair.


Subject(s)
DNA Damage , DNA Repair , DNA/radiation effects , Recombination, Genetic , Animals , Base Sequence , Binding Sites , CHO Cells , Cell Line , Cell-Free System , Cricetinae , Escherichia coli/metabolism , Gene Deletion , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Homology, Nucleic Acid , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...