Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Addit Manuf ; 842024 Mar.
Article in English | MEDLINE | ID: mdl-38567361

ABSTRACT

The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters. Here, an interlaboratory study (ILS) is described in which 24 individual laboratories performed a working curve measurement on an aliquot from a single batch of PAM resin. The ILS reveals that there is enormous scatter in the working curve data and the key fit parameters derived from it. The measured depth of light penetration Dp varied by as much as 7x between participants, while the critical radiant exposure for gelation Ec varied by as much as 70x. This significant scatter is attributed to a lack of common procedure, variation in light engines, epistemic uncertainties from the Jacobs equation, and the use of measurement tools with insufficient precision. The ILS findings highlight an urgent need for procedural standardization and better hardware characterization in this rapidly growing field.

2.
Rev Sci Instrum ; 86(2): 024901, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25725871

ABSTRACT

Thermal phenomena in many biological systems offer an alternative detection opportunity for quantifying relevant sample properties. While there is substantial prior work on thermal characterization methods for fluids, the push in the biology and biomedical research communities towards analysis of reduced sample volumes drives a need to extend and scale these techniques to these volumes of interest, which can be below 100 pl. This work applies the 3ω technique to measure the temperature-dependent thermal conductivity and heat capacity of de-ionized water, silicone oil, and salt buffer solution droplets from 24 to 80 °C. Heater geometries range in length from 200 to 700 µm and in width from 2 to 5 µm to accommodate the size restrictions imposed by small volume droplets. We use these devices to measure droplet volumes of 2 µl and demonstrate the potential to extend this technique down to pl droplet volumes based on an analysis of the thermally probed volume. Sensitivity and uncertainty analyses provide guidance for relevant design variables for characterizing properties of interest by investigating the tradeoffs between measurement frequency regime, device geometry, and substrate material. Experimental results show that we can extract thermal conductivity and heat capacity with these sample volumes to within less than 1% of thermal properties reported in the literature.


Subject(s)
Microtechnology/methods , Temperature , Algorithms , Feasibility Studies , Silicon Dioxide , Uncertainty
3.
Proc Natl Acad Sci U S A ; 110(51): 20426-30, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24309375

ABSTRACT

Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies--from thermal solar to automotive waste heat recovery systems--whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties.

4.
Nanoscale Res Lett ; 7(1): 554, 2012 Oct 06.
Article in English | MEDLINE | ID: mdl-23039084

ABSTRACT

The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For SiNWs with diameters larger than the phonon mean free path, porosity substantially reduces the thermal conductivity, yielding thermal conductivities as low as 1 W/m/K in highly porous SiNWs. However, when the SiNW diameter is below the phonon mean free path, both the internal porosity and the diameter significantly contribute to phonon scattering and lead to reduced thermal conductivity of the SiNWs.

5.
ACS Nano ; 5(6): 4818-25, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21598962

ABSTRACT

Nanostructured composites containing aligned carbon nanotubes (CNTs) are very promising as interface materials for electronic systems and thermoelectric power generators. We report the first data for the thermal conductivity of densified, aligned multiwall CNT nanocomposite films for a range of CNT volume fractions. A 1 vol % CNT composite more than doubles the thermal conductivity of the base polymer. Denser arrays (17 vol % CNTs) enhance the thermal conductivity by as much as a factor of 18 and there is a nonlinear trend with CNT volume fraction. This article discusses the impact of CNT density on thermal conduction considering boundary resistances, increased defect concentrations, and the possibility of suppressed phonon modes in the CNTs.


Subject(s)
Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Polymers/chemistry , Electric Conductivity , Electronics , Hot Temperature , Nanostructures , Nanotechnology/methods , Surface Properties , Temperature , Thermal Conductivity
6.
Nano Lett ; 10(7): 2395-400, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20503983

ABSTRACT

Interfaces dominate the thermal resistances in aligned carbon nanotube arrays. This work uses nanosecond thermoreflectance thermometry to separate interface and volume resistances for 10 microm thick aligned SWNT films coated with Al, Ti, Pd, Pt, and Ni. We interpret the data by defining the nanotube-metal engagement factor, which governs the interface resistance and is extracted using the measured film heat capacity. The metal-SWNT and SWNT-substrate resistances range between 3.8 and 9.2 mm(2)K/W and 33-46 mm(2)K/W, respectively. The temperature dependency of the heat capacity data, measured between 125 and 300 K, is in good agreement with theoretical predictions. The temperature dependence demonstrated by the metal-SWNT interface resistance data suggests inelastic phonon transmission.

SELECTION OF CITATIONS
SEARCH DETAIL
...