Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 25(7): 1161-1171, 2017 07.
Article in English | MEDLINE | ID: mdl-28153787

ABSTRACT

OBJECTIVE: To define if adipose mesenchymal stromal cell (ASC) treatment mediated switching of the pro-inflammatory profile of M1-like macrophages as a means to develop a tailored in vitro efficacy/potency test. DESIGN: We firstly performed immunohistochemical analysis of CD68, CD80 (M1-like) and CD206 (M2-like) macrophages in osteoarthritic (OA) synovial tissue. ASC were co-cultured in contact and in transwell with activated (GM-CSF + IFNγ)-M1 macrophages. We analyzed IL1ß, TNFα, IL6, MIP1α/CCL3, S100A8, S100A9, IL10, CD163 and CD206 by qRT-PCR or immunoassays. Prostaglandin E2 (PGE2) blocking experiments were performed using PGE2 receptor antagonist. RESULTS: In moderate grade OA synovium we did not always find a higher percentage of CD80 with respect to CD206. M1-like-activated macrophage factors IL1ß, TNFα, IL6, MIP1α/CCL3, S100A8 and S100A9 were down-modulated both in contact and in transwell by ASC. However, in both systems ASC induced the typical M2-like macrophage markers IL10, CD163 and CD206. Activated-M1-like macrophages pre-treated with PGE2 receptor antagonist failed to decrease secretion of TNFα, IL6 and to increase that of IL10, CD163 and CD206 when co-cultured with ASC confirming a PGE2 specific role. CONCLUSIONS: We demonstrated that ASC are responsible for the switching of activated-M1-like inflammatory macrophages to a M2-like phenotype, mainly through PGE2. This evidenced that activated-M1-like macrophages may represent a relevant cell model to test the efficacy/potency of ASC and suggests a specific role of ASC as important determinants in therapeutic dampening of synovial inflammation in OA.


Subject(s)
Adipocytes/drug effects , Dinoprostone/pharmacology , Macrophages/drug effects , Mesenchymal Stem Cells/drug effects , Oxytocics/pharmacology , Adult , Antigens, CD/metabolism , Case-Control Studies , Cell Differentiation/physiology , Cell Movement/drug effects , Cells, Cultured , Female , Humans , Leukocytes, Mononuclear/drug effects , Male , Middle Aged , Osteoarthritis/pathology , Subcutaneous Fat, Abdominal/cytology , Synovial Membrane/cytology , Synovial Membrane/drug effects
2.
Osteoarthritis Cartilage ; 23(11): 2045-57, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26521751

ABSTRACT

OBJECTIVE: To define whether good manufacturing practice (GMP)-clinical grade adipose stem cell (ASC)-derived conditioned medium (CM) is as effective as GMP-ASC in modulating inflammatory and catabolic factors released by both osteoarthritis (OA) chondrocytes or synoviocytes. METHODS: OA chondrocytes and synoviocytes were treated with ASC-CM or co-cultured with ASC. Inflammatory factors (IL6, CXCL1/GROα,CXCL8/IL8, CCL2/MCP-1, CCL3/MIP-1α and CCL5/RANTES) and proteinases, such as metalloproteinase (MMP13), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS4, ADAMTS5) and their tissue metalloproteinase inhibitors (TIMP1, TIMP3) were evaluated by qRT-PCR or immunoassays. The involvement of prostaglandin E2 (PGE2) was also analyzed. RESULTS: Most ASC-CM ratios tested did not decrease IL6, CCL2/MCP-1, CCL3/MIP1-α, CCL5/RANTES on basal inflamed chondrocytes or synoviocytes in contrast to what we found using ASC in co-culture. CXCL8/IL8 and CXCL1/GROα were not decreased by ASC-CM on synoviocytes but were only partially reduced on chondrocytes. Moreover, ASC-CM was less efficient both on basal inflamed OA chondrocytes and synoviocytes in reducing proteinases, such as MMP13, ADAMTS4, ADAMTS5 and increasing TIMP1 and TIMP3 compared to ASC in co-culture. The different ratios of ASC-CM contain lower amounts of PGE2 which were not sufficient to reduce inflammatory factors. CONCLUSIONS: These data show that ASC-CM has a limited ability to decrease inflammatory and proteinases factors produced by OA chondrocytes or synoviocytes. ASC-CM is not sufficient to recapitulate the beneficial effect demonstrated using ASC in co-culture with inflamed OA chondrocytes and synoviocytes and shows that their use in clinical trials is fundamental to counteract OA progression.


Subject(s)
Adipocytes/cytology , Chondrocytes/metabolism , Culture Media, Conditioned/pharmacology , Osteoarthritis, Knee/metabolism , Stem Cell Transplantation/methods , Stem Cells/cytology , Synovial Membrane/metabolism , Aged , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/pathology , Female , Humans , Male , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/therapy , Synovial Membrane/pathology
3.
Osteoarthritis Cartilage ; 23(7): 1226-30, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25797039

ABSTRACT

OBJECTIVE: To contribute to clarify molecular mechanisms supporting senescence and de-differentiation of chondrocytes in chondrocyte pathologies such as osteoarthritis (OA). Specifically, we investigated the relationship between the nuclear lamina protein Lamin B1 and the negative regulator of chondrogenesis Slug transcription factor in osteoarthritic chondrocytes. METHODS: Lamin B1 and Slug proteins were analyzed in cartilage explants from normal subjects and OA patients by immunohistochemical technique. Their expression was confirmed on isolated chondrocytes both at passage 0 and passage 2 (de-differentiated chondrocytes) by immunofluorescence and western blot. Subsequently, we explored the "in vivo" binding of Slug on LMNB1 promoter by chromatin immunoprecipitation assay (ChIP). RESULTS: In this study we demonstrated that nuclear lamina protein Lamin B1 and anti-chondrogenic Slug transcription factor are upregulated in cartilage and OA chondrocytes. Furthermore, we found that Slug is "in vivo" recruited by LMNB1 gene promoter mostly when chondrocytes undergo de-differentiation or OA degeneration. CONCLUSIONS: We described for the first time a potential regulatory role of Slug on the LMNB1 gene expression in OA chondrocytes. These findings may have important implications for the study of premature senescence, and degeneration of cartilage, and may contribute to develop effective therapeutic strategies against signals supporting cartilage damage in different subsets of patients.


Subject(s)
Chondrocytes/metabolism , Laminin/biosynthesis , Osteoarthritis, Knee/metabolism , Transcription Factors/biosynthesis , Aged , Cartilage, Articular/metabolism , Cell Nucleus/metabolism , Cells, Cultured , Female , Humans , Knee Joint/metabolism , Laminin/genetics , Male , Middle Aged , Osteoarthritis, Knee/genetics , Snail Family Transcription Factors , Transcription Factors/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...