Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 81(2): 93-102, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18977391

ABSTRACT

In the attempt to eradicate HIV-1 infection, a strategy to eliminate macrophages, one of the most important cellular reservoirs in sustaining virus replication during HAART, could be of great benefit in the suppression of viral rebound. Aware of the ability of clodronate to cause macrophage depletion, the effect of the administration of clodronate encapsulated in erythrocytes on disease progression and on viral rebound was evaluated in a murine model of AIDS (MAIDS). One group of LP-BM5 retroviral complex-infected C57BL/6 mice received oral administrations of azidothymidine and dideoxyinosine daily for 12 weeks; two other groups received in addition, either clodronate-loaded erythrocytes or free clodronate at 7-10 day intervals. At the end of the treatment, the three groups maintained parameters characterizing disease progression similar to those of uninfected mice and showed a significantly lower level of BM5d DNA than infected mice in all organs and cells tested. To assess the viral rebound, some animals were left for an additional 4 month period without any treatment. After this time, the BM5d DNA content in blood leukocytes increased in all groups, but the group having received clodronate-loaded erythrocytes, in addition to transcriptase inhibitors, showed a significant delay in viral rebound.


Subject(s)
DNA, Viral/blood , Macrophages/immunology , Murine Acquired Immunodeficiency Syndrome/immunology , Viral Load , Animals , Anti-HIV Agents/administration & dosage , Clodronic Acid/administration & dosage , Didanosine/administration & dosage , Female , Immunologic Factors/administration & dosage , Leukocyte Reduction Procedures , Mice , Mice, Inbred C57BL , Murine Acquired Immunodeficiency Syndrome/drug therapy , Zidovudine/administration & dosage
2.
Antiviral Res ; 77(2): 120-7, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18164447

ABSTRACT

Antioxidant molecules can be used both to replenish the depletion of reduced glutathione (GSH) occurring during HIV infection, and to inhibit HIV replication. The purpose of this work was to assess the efficacy of two pro-GSH molecules able to cross the cell membrane more easily than GSH. We used an experimental animal model consisting of C57BL/6 mice infected with the LP-BM5 viral complex; the treatments were based on the intramuscular administration of I-152, a pro-drug of N-acetylcysteine and S-acetyl-beta-mercaptoethylamine, and S-acetylglutathione, an acetylated GSH derivative. The results show that I-152, at a concentration of 10.7 times lower than GSH, caused a reduction in lymph node and spleen weights of about 55% when compared to infected animals and an inhibition of about 66% in spleen and lymph node virus content. S-acetylglutathione, at half the concentration of GSH, caused a reduction in lymph node weight of about 17% and in spleen and lymph node virus content of about 70% and 30%, respectively. These results show that the administration of pro-GSH molecules may favorably substitute for the use of GSH as such.


Subject(s)
Acetylcysteine/analogs & derivatives , Anti-HIV Agents/therapeutic use , Cysteamine/analogs & derivatives , Glutathione/analogs & derivatives , Murine Acquired Immunodeficiency Syndrome/drug therapy , Prodrugs/therapeutic use , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Animals , Anti-HIV Agents/pharmacology , Cell Proliferation/drug effects , Cysteamine/pharmacology , Cysteamine/therapeutic use , DNA, Viral/drug effects , DNA, Viral/genetics , Disease Models, Animal , Female , Glutathione/pharmacology , Glutathione/therapeutic use , Hypergammaglobulinemia/drug therapy , Immunoglobulin G/blood , Leukemia Virus, Murine/drug effects , Leukemia Virus, Murine/genetics , Leukemia Virus, Murine/isolation & purification , Lymph Nodes/drug effects , Lymph Nodes/physiopathology , Lymphocytes/drug effects , Mice , Mice, Inbred C57BL , Organ Size/drug effects , Polymerase Chain Reaction , Prodrugs/pharmacology , Spleen/drug effects , Spleen/physiopathology
3.
Curr Med Chem ; 13(15): 1749-55, 2006.
Article in English | MEDLINE | ID: mdl-16787218

ABSTRACT

Reduced glutathione (GSH) is present in millimolar concentrations in mammalian cells. It is involved in many cellular functions such as detoxification, amino acid transport, production of coenzymes, and the recycling of vitamins E and C. GSH acts as a redox buffer to preserve the reduced intracellular environment. Decreased glutathione levels have been found in numerous diseases such as cancer, viral infections, and immune dysfunctions. Many antioxidant molecules, such as GSH and N-acetylcysteine (NAC), have been demonstrated to inhibit in vitro and in vivo viral replication through different mechanisms of action. Accumulating evidence suggests that intracellular GSH levels in antigen-presenting cells such as macrophages, influence the Th1/Th2 cytokine response pattern, and more precisely, GSH depletion inhibits Th1-associated cytokine production and/or favours Th2 associated responses. It is known that GSH is not transported to most cells and tissues in a free form. Therefore, a number of different approaches have been developed in the last years to circumvent this problem. This review discusses the capacity of some new molecules with potent pro-GSH effects either to exert significant antiviral activity or to augment GSH intracellular content in macrophages to generate and maintain the appropriate Th1/Th2 balance. The observations reported herein show that pro-GSH molecules represent new therapeutic agents to treat antiviral infections and Th2-mediated diseases such as allergic disorders and AIDS.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antiviral Agents/pharmacology , Glutathione/pharmacology , Animals , Glutathione/physiology , Humans , Mice , Th1 Cells/immunology , Th2 Cells/immunology , Virus Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...