Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Fitoterapia ; 170: 105648, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562489

ABSTRACT

Pistacia lentiscus L. var. Chia belongs to the Anacardiaceae family, and it is cultivated only in the south part of Chios island, in Greece. Even though it is renowned for its unique resin, Chios mastic gum (CMG), the tree leaves have also been used in traditional medicine, while the annual pruning generates a large biomass of unused by-products. Thus, the aim of the present study was the detailed phytochemical investigation of P. lentiscus var. Chia leaves towards the search of antimicrobial agents. UPLC-HRMS & HRMS/MS based dereplication methods led to the detailed characterization of the aqueous leaf extract. In addition, twelve compounds were isolated and purified from the methanol extract and were identified using spectroscopic and spectrometric methods (NMR, HRMS) belonging to phenolic acids, tannins, flavonoids and terpenes, with the most interesting being 2-hydroxy-1,8-cineole ß-D-glucopyranoside which was isolated for the first time in the Anacardiaceae family. Remarkably, based on NMR data, methanol and aqueous extracts were found to be particularly rich in shikimic acid, a valuable building block for the pharmaceutical industry, for instance in the synthesis of the active ingredient of Tamiflu®, oseltamivir. Finally, extracts (EtOAc, MeOH, H2O) and major compounds i.e., shikimic acid, 2-hydroxy-1,8-cineole ß-D-glucopyranoside and myricitrin were evaluated for their antimicrobial properties. MeOH and H2O mastic leaf extracts as well as myricitrin and, particularly, 2-hydroxy-1,8-cineole ß-D-glucopyranoside showed significant selective activity against pathogenic Mucorales, but not against Aspergilli (Aspergillus nidulans, Aspergillus fumigatus), Candida albicans or bacteria (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis).


Subject(s)
Anti-Infective Agents , Pistacia , Pistacia/chemistry , Shikimic Acid , Methanol , Molecular Structure , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Mastic Resin , Plant Extracts/chemistry , Phytochemicals/pharmacology , Eucalyptol
2.
Molecules ; 28(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36838725

ABSTRACT

Extra virgin olive oil (EVOO) possesses a high-value rank in the food industry, thus making it a common target for adulteration. Hence, several methods have been essentially made available over the years. However, the issue of authentication remains unresolved with national and food safety organizations globally struggling to regulate and control its market. Over the course of this study, the aim was to determine the origin of EVOOs suggesting a high-throughput, state-of-the-art method that could be easily adopted. A rapid, NMR-based untargeted metabolite profiling method was applied and complemented by multivariate analysis (MVA) and statistical total correlation spectroscopy (STOCSY). STOCSY is a valuable statistical tool contributing to the biomarker identification process and was employed for the first time in EVOO analysis. Market samples from three Mediterranean countries of Spain, Italy, and Greece, blended samples from these countries, as well as monocultivar samples from Greece were analyzed. The NMR spectra were collected, with the help of chemometrics acting as "fingerprints" leading to the discovery of certain chemical classes and single biomarkers that were related to the classification of the samples into groups based on their origin.


Subject(s)
Olive Oil , Olive Oil/chemistry , Magnetic Resonance Spectroscopy , Multivariate Analysis , Italy , Spain
3.
Foods ; 11(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36140981

ABSTRACT

Honey is a natural, healthy commodity and is probably among the most complex foods produced by nature. It is the oldest recorded and certainly the only natural sweetener that can be used by humans without any further processing. Nowadays, the increase in honey's value, along with its growing list of healthy attributes, has made the present raw material a prime target for adulteration. In the current study, NMR-based metabolite profiling in combination with chemometrics was applied in the quality control of Greek honeys from northeastern Aegean islands. Moreover, statistical total correlation spectroscopy (STOCSY) was employed for the first time as a dereplication and structural elucidation tool in the honey biomarker identification process. A total of 10 compounds were successfully identified in honey total extracts via 1H NMR spectroscopy. Compounds such as 5-(hydroxymethyl)furfural, methyl syringate, a mono-substituted glycerol derivative and 3-hydroxy-4-phenyl-2-butanone, among others, were identified as potential biomarkers related to the botanical and geographical origin of the samples. High-Resolution Mass Spectrometry (HRMS) was used as an additional verification tool on the identified compounds.

4.
Phytochem Anal ; 33(1): 83-93, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34096121

ABSTRACT

INTRODUCTION: Nuclear magnetic resonance (NMR)-based metabolic profiling has been widely used in food and plant sciences. Despite its simplicity and inherent reproducibility, the determination of the appropriate pre-processing procedures greatly affects the obtained metabolic profile. OBJECTIVES: The current study represents a detailed guide of use for untargeted NMR-based metabolic profiling of table olives (Olea europaea L.). METHODS: Greek Kalamon table olives from different geographical origins were selected as reference materials. Differently treated samples were extracted using different solvents and/or solvent systems. Chemical profiles were evaluated with high-performance thin layer chromatography (HPTLC). Different deuterated solvents and sample concentrations were evaluated for the recording of optimal quality spectra. RESULTS: The methanol extract of freeze-dried table olives was found to contain the most representative secondary metabolites, in higher concentrations, as well. The optimal deuterated solvent for the NMR analysis was methanol-d4 , while final sample concentration should be within the range of 10 to 15 mg/mL. Multivariate data analysis was also used to estimate and confirm the variation and clustering caused by different characteristics of the samples. CONCLUSIONS: Results of the present study make evident the necessity for thorough planning and method development prior to any extensive metabolomic study based on NMR spectroscopy. Pre-processing and sample preparation stages seemed to greatly affect the metabolic profile and spectral quality in the case of table olives, which by extrapolation could apply to other food commodities. Nevertheless, the nature of the samples must be fully described in general, in order to proceed to solid conclusions.


Subject(s)
Olea , Magnetic Resonance Spectroscopy , Metabolomics , Reproducibility of Results
5.
Nutrients ; 13(2)2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33503913

ABSTRACT

Oleuropein (OLEU) is the most distinguished phenolic compound found in olive fruit and the leaves of Olea europaea L., with several pharmacological properties, including anti-cancer actions. Adriamycin (ADR) is an anthracycline widely used as a chemotherapeutic agent, although it presents significant side effects. The aim of the present study was to investigate the effect of oleuropein alone (20 µg/mL) and in co-treatment with ADR (50 nM), in MG-63 human osteosarcoma cells. Therefore, cellular and molecular techniques, such as MTT assay, flow cytometry, real-time Polymerase Chain Reaction (PCR), western blot and Elisa method, as well as Nuclear Magnetic Resonance (NMR) spectroscopy, were applied to unveil changes in the signal transduction pathways involved in osteosarcoma cells survival. The observed alterations in gene, protein and metabolite levels denote that OLEU not only inhibits MG-63 cells proliferation and potentiates ADR's cytotoxicity, but also exerts its action, at least in part, through the induction of autophagy.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Cytotoxins/pharmacology , Dietary Supplements , Doxorubicin/pharmacology , Iridoids/pharmacology , Osteosarcoma/drug therapy , Anti-Infective Agents/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Iridoid Glucosides , Tumor Cells, Cultured
6.
Molecules ; 25(15)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32717850

ABSTRACT

Edible olive drupes (from Olea europaea L.) are a high-value food commodity with an increasing production trend over the past two decades. In an attempt to prevent fraud issues and ensure quality, the International Olive Council (IOC) issued guidelines for their sensory evaluation. However, certain varieties, geographical origins and processing parameters are omitted. The aim of the present study was the development of a method for the quality assessment of edible olives from the Konservolia, Kalamon and Chalkidikis cultivars from different areas of Greece processed with the Spanish or Greek method. A rapid NMR-based untargeted metabolic profiling method was developed along with multivariate analysis (MVA) and applied for the first time in edible olives' analysis complemented by the aid of statistical total correlation spectroscopy (STOCSY). Specific biomarkers, related to the classification of olives based on different treatments, cultivars and geographical origin, were identified. STOCSY proved to be a valuable aid towards the assignment of biomarkers, a bottleneck in untargeted metabolomic approaches.


Subject(s)
Metabolomics/methods , Olea/chemistry , Phytochemicals/analysis , Fermentation , Food Quality , Greece , Magnetic Resonance Imaging , Multivariate Analysis , Plants, Edible/chemistry
7.
Nutr Cancer ; 72(2): 320-332, 2020.
Article in English | MEDLINE | ID: mdl-31274029

ABSTRACT

Prostate cancer is the second most commonly diagnosed cancer in men worldwide, which is almost incurable, once it progresses into the metastatic stage. Adriamycin (ADR) is a known chemotherapeutic agent that causes severe side effects. In recent years, studies in natural plant products have revealed their anticancer activities. In particular, Glycyrrhiza glabra enhanced extract (GGE), commonly known as licorice, has been reported to exert antiproliferative properties against cancer cells. In this study, the cytotoxic potential of GGE was assessed in PC-3 cells, when it is administrated alone or in combination with Adriamycin. PC-3 cells were treated with GGE and/or ADR, and the inhibition of cell proliferation was evaluated by the MTT assay. Cell cycle alterations and apoptosis rate were measured through flow cytometry. Expression levels of autophagy-related genes were evaluated with specific ELISA kits, Western blotting, and real-time PCR, while NMR spectrometry was used to identify the implication of specific metabolites. Our results demonstrated that GGE alone or in co-treatment with ADR shows antiproliferative properties against PC-3 cells, which are mediated by both apoptosis and autophagy mechanisms.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Doxorubicin/pharmacology , Glycyrrhiza/chemistry , Metabolome/drug effects , Plant Extracts/pharmacology , Plant Roots/chemistry , Prostatic Neoplasms/drug therapy , Antibiotics, Antineoplastic/pharmacology , Apoptosis , Autophagy , Cell Proliferation , Humans , Male , PC-3 Cells , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology
8.
Planta Med ; 85(11-12): 997-1007, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31288278

ABSTRACT

Silymarin-enriched extract (SEE) is obtained from Silybum marianum (Asteraceae). Doxorubicin (DXR) is a widely used chemotherapeutical yet with severe side effects. The goal of the present study was to assess the pharmacologic effect of SEE and its bioactive components silibinin and silychristine when administrated alone or in combination with DXR in the human prostate cancer cells (PC-3). PC-3 cells were treated with SEE, silibinin (silybins A and B), silychristine, alone, and in combination with DXR, and cell proliferation was assessed by the MTT assay. Cell cycle, apoptosis, and autophagy rate were assessed by flow cytometry. Expression levels of autophagy-related genes were quantified by qRT-PCR, ELISA and western blot while transmission electron microscopy was performed to reveal autophagic structures. Finally, NMR spectrometry was used to identify specific metabolites related to autophagy. SEE inhibited PC-3 cell proliferation in a dose-dependent manner while the co-treatment (DXR-SEE) revealed an additive cytotoxic effect. Cell cycle, apoptosis, and autophagy variations were observed in addition to altered expression levels of autophagy related genes (LC3, p62, NBR1, Beclin1, ULK1, AMBRA1), while several modifications in autophagic structures were identified after DXR-SEE co-treatment. Furthermore, treated cells showed a different metabolic profile, with significant alterations in autophagy-related metabolites such as branched-chain amino acids. In conclusion, the DXR-SEE co-treatment provokes perturbations in the autophagic mechanism of prostate cancer cells (PC-3) compared to DXR treatment alone, causing an excessive cell death. These findings propose the putative use of SEE as an adjuvant cytotoxic agent.


Subject(s)
Doxorubicin/therapeutic use , Plant Extracts/therapeutic use , Prostatic Neoplasms/drug therapy , Silybum marianum/chemistry , Silymarin/therapeutic use , Blotting, Western , Drug Synergism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Male , PC-3 Cells/drug effects , Real-Time Polymerase Chain Reaction , Silymarin/isolation & purification
9.
Planta Med ; 81(8): 648-54, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26018920

ABSTRACT

The olive (Olea europaea) leaf is considered an important traditional herbal medicine utilized against infectious diseases, and for the treatment of diabetes and hypertension. Moreover, olive leaf constituents have been related to cardioprotection, probably due to their association with cellular redox modulating effects. The pathogenesis of certain common diseases, including those of the cardiovascular system, involves oxidative stress and tissue inflammation. Olive polyphenolic compounds, such as oleuropein, hydroxytyrosol, or tyrosol, possess antioxidant, anti-inflammatory, antiatherosclerotic, anti-ischemic, and hypolipidemic effects on the myocardium as demonstrated by various in vitro and in vivo studies. In this review article, we summarize the current knowledge on the role of the olive leaf constituents in the prevention of cardiac dysfunction and highlight future perspectives in their use as cardioprotective agents in therapeutics.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Heart Diseases/prevention & control , Olea/chemistry , Phytotherapy , Polyphenols/therapeutic use , Protective Agents/therapeutic use , Humans , Medicine, Traditional , Oxidative Stress , Plant Leaves/chemistry
10.
Planta Med ; 81(8): 655-63, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25473920

ABSTRACT

Ischemic preconditioning, which is mediated by cell signaling molecules, protects the heart from ischemia-reperfusion injury by limiting the infarct size. Oleuropein, the main polyphenolic constituent of olives, reduced the infarct size in normal and cholesterol-fed rabbits when it was administered at a nutritional dose. The aim of the present study was to compare the effects of oleuropein and preconditioning in terms of the cell signaling and metabolism pathways underlying myocardial protection. Rabbits were randomly divided into six groups: the control group received 5 % dextrose for six weeks, the preconditioning group was subjected to two cycles of preconditioning with 5 min ischemia/10 min reperfusion, the O6 group was treated with oleuropein for six weeks, the Chol group was fed a cholesterol-enriched diet and 5 % dextrose for six weeks, and the CholO6 and CholO3 groups were treated with cholesterol and oleuropein for six and three weeks, respectively; oleuropein was dissolved in 5 % dextrose solution and was administered orally at a dose of 20 mg × kg(-1) × day(-1). All animals were subsequently subjected to 30 min myocardial ischemia followed by 10 min of reperfusion. At that time, myocardial biopsies were taken from the ischemic areas for the assessment of oxidative and nitrosative stress biomarkers (malondialdehyde and nitrotyrosine), and determination of phosphorylation of signaling molecules involved in the mechanism of preconditioning (PI3K, Akt, eNOS, AMPK, STAT3). The tissue extracts NMR metabolic profile was recorded and further analyzed by multivariate statistics. Oxidative biomarkers were significantly reduced in the O6, CholO6, and CholO3 groups compared to the control, preconditioning, and Chol groups. Considering the underlying signaling cascade, the phosphorylation of PI3K, Akt, eNOS, AMPK, and STAT-3 was significantly higher in the preconditioning and all oleuropein-treated groups compared to the control and Chol groups. The NMR-based metabonomic study, performed through the analysis of spectroscopic data, depicted differences in the metabolome of the various groups with significant alterations in purine metabolism. In conclusion, the addition of oleuropein to a normal or hypercholesterolemic diet results in a preconditioning-like intracellular effect, eliminating the deleterious consequences of ischemia and hypercholesterolemia, followed by a decrease of oxidative stress biomarkers. This effect is exerted through inducing preconditioning-involved signaling transduction. Nutritional preconditioning may support the low cardiovascular morbidity and mortality associated with the consumption of olive products.


Subject(s)
Hypercholesterolemia/drug therapy , Iridoids/pharmacology , Olea/chemistry , Protective Agents/pharmacology , Animals , Cholesterol/adverse effects , Disease Models, Animal , Iridoid Glucosides , Male , Malondialdehyde/metabolism , Myocardial Ischemia/drug therapy , Myocardial Reperfusion Injury/drug therapy , Myocardium/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Rabbits , Signal Transduction/drug effects , Tyrosine/analogs & derivatives , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...