Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612903

ABSTRACT

Proteins of the sorting nexin (SNX) family present a modular structural architecture with a phox homology (PX) phosphoinositide (PI)-binding domain and additional PX structural domains, conferring to them a wide variety of vital eukaryotic cell's functions, from signal transduction to membrane deformation and cargo binding. Although SNXs are well studied in human and yeasts, they are poorly investigated in protists. Herein, is presented the characterization of the first SNX identified in Leishmania protozoan parasites encoded by the LdBPK_352470 gene. In silico secondary and tertiary structure prediction revealed a PX domain on the N-terminal half and a Bin/amphiphysin/Rvs (BAR) domain on the C-terminal half of this protein, with these features classifying it in the SNX-BAR subfamily of SNXs. We named the LdBPK_352470.1 gene product LdSNXi, as it is the first SNX identified in Leishmania (L.) donovani. Its expression was confirmed in L. donovani promastigotes under different cell cycle phases, and it was shown to be secreted in the extracellular medium. Using an in vitro lipid binding assay, it was demonstrated that recombinant (r) LdSNXi (rGST-LdSNXi) tagged with glutathione-S-transferase (GST) binds to the PtdIns3P and PtdIns4P PIs. Using a specific a-LdSNXi antibody and immunofluorescence confocal microscopy, the intracellular localization of endogenous LdSNXi was analyzed in L. donovani promastigotes and axenic amastigotes. Additionally, rLdSNXi tagged with enhanced green fluorescent protein (rLdSNXi-EGFP) was heterologously expressed in transfected HeLa cells and its localization was examined. All observed localizations suggest functions compatible with the postulated SNX identity of LdSNXi. Sequence, structure, and evolutionary analysis revealed high homology between LdSNXi and the human SNX2, while the investigation of protein-protein interactions based on STRING (v.11.5) predicted putative molecular partners of LdSNXi in Leishmania.


Subject(s)
Leishmania , Humans , Leishmania/genetics , HeLa Cells , Sorting Nexins/genetics , Signal Transduction , Antibodies , Glutathione Transferase
2.
Front Cell Infect Microbiol ; 11: 591868, 2021.
Article in English | MEDLINE | ID: mdl-33842381

ABSTRACT

The intracellular protozoan parasites of the Leishmania genus are responsible for Leishmaniases, vector borne diseases with a wide range of clinical manifestations. Leishmania (L.) donovani causes visceral leishmaniasis (kala azar), the most severe of these diseases. Along their biological cycle, Leishmania parasites undergo distinct developmental transitions including metacyclogenesis and differentiation of metacyclic promastigotes (MPs) to amastigotes. Metacyclogenesis inside the phlebotomine sandfly host's midgut converts the procyclic dividing promastigotes to non-dividing infective MPs eventually injected into the skin of mammalian hosts and phagocytosed by macrophages where the MPs are converted inside modified phagolysosomes to the intracellular amastigotes. These developmental transitions involve dramatic changes in cell size and shape and reformatting of the flagellum requiring thus membrane and cytoskeleton remodeling in which phosphoinositide (PI) signaling and metabolism must play central roles. This study reports on the LDBPK_220120.1 gene, the L. donovani ortholog of LmjF.22.0250 from L. major that encodes a phosphatase from the "Atypical Lipid Phosphatases" (ALPs) enzyme family. We confirmed the expression of the LDBPK_220120.1 gene product in both L. donovani promastigotes and axenic amastigotes and showed that it behaves in vitro as a Dual Specificity P-Tyr and monophosphorylated [PI(3)P and PI(4)P] PI phosphatase and therefore named it LdTyrPIP_22 (Leishmaniad onovani Tyrosine PI Phosphatase, gene locus at chromosome 22). By immunofluorescence confocal microscopy we localized the LdTyrPIP_22 in several intracellular sites in the cell body of L. donovani promastigotes and amastigotes and in the flagellum. A temperature and pH shift from 25°C to 37°C and from pH 7 to 5.5, induced a pronounced recruitment of LdTyrPIP_22 epitopes to the flagellar pocket and a redistribution around the nucleus. These results suggest possible role(s) for this P-Tyr/PI phosphatase in the regulation of processes initiated or upregulated by this temperature/pH shift that contribute to the developmental transition from MPs to amastigotes inside the mammalian host macrophages.


Subject(s)
Leishmania donovani , Animals , Leishmania donovani/genetics , Lipids , Phosphatidylinositol Phosphates , Phosphoric Monoester Hydrolases/genetics , Substrate Specificity
3.
Biochim Biophys Acta Biomembr ; 1861(9): 1546-1557, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31283918

ABSTRACT

Recombinant expression systems for mammalian membrane transport proteins are often limited by insufficient yields to support structural studies, inadequate post-translational processing and problems related with improper membrane targeting or cytotoxicity. Use of alternative expression systems and optimization of expression/purification protocols are constantly needed. In this work, we explore the applicability of the laboratory strain LEXSY of the ancient eukaryotic microorganism Leishmania tarentolae as a new expression system for mammalian nucleobase permeases of the NAT/NCS2 (Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2) family. We achieved the heterologous expression of the purine-pyrimidine permease rSNBT1 from Rattus norvegicus (tagged at C-terminus with a red fluorescent protein), as confirmed by confocal microscopy and biochemical analysis of the subcellular fractions enriched in membrane proteins. The cDNA of rSNBT1 has been subcloned in a pLEXSY-sat-mrfp1vector and used to generate transgenic L. tarentolae-rsnbt1-mrfp1 strains carrying the pLEXSY-sat-rsnbt1-mrfp1 plasmid either episomally or integrated in the chromosomal DNA. The chimeric transporter rSNBT1-mRFP1 is targeted to the ER and the plasma membrane of the L. tarentolae promastigotes. The transgenic strains are capable of transporting nucleobases that are substrates of rSNBT1 but also of the endogenous L. tarentolae nucleoside/nucleobase transporters. A dipyridamole-resistant Na+-dependent fraction of uptake is attributed to the exogenously expressed rSNBT1.


Subject(s)
Leishmania/genetics , Nucleobase Transport Proteins/genetics , Protein Engineering/methods , Animals , Animals, Genetically Modified , Biological Transport/genetics , Ion Transport , Leishmania/metabolism , Membrane Transport Proteins/metabolism , Nucleobase Transport Proteins/metabolism , Purines , Pyrimidines , Rats , Sodium/metabolism , Symporters/metabolism
4.
Bio Protoc ; 9(19): e3384, 2019 Oct 05.
Article in English | MEDLINE | ID: mdl-33654880

ABSTRACT

Acid ecto-phosphatases are enzymes that hydrolyze phosphomonoesters in the acidic pH range with their active sites facing the extacellular medium. Their activities can be measured in living cells. In bacteria and protozoan pathogens, acid ecto-phosphatases have been associated with the survival of intracellular pathogens within phagocytes through inhibition of the respiratory burst, suggesting that they act as virulence factors. Extracellular acid phosphatase activity in Leishmania (L.) donovani has been associated with the degree of promastigote virulence/infectivity. The levels of acid ecto-phosphatase activity in different Leishmania sp or even strains of the same species vary and this has been linked to their virulence. It may also be related to their ability to survive and multiply in the insect host. Acid phosphatase enzymatic activity can be measured in crude membrane fractions and in membrane fractions enriched in plasma membrane, however, in these cases, the intracellular acid phosphatases, mainly localized in lysosomes, contribute to the final result. Therefore, measuring phosphatase activity at the surface of live cells in acidic pH range is the only accurate way to measure acid ecto-phosphatase activity. This assay is performed at 25 °C or 37 °C for 30 min using as substrate the generic phosphatase substrate p-nitrophenyl phosphate (pNPP), in a citrate buffer, with or without sodium tartrate (L(+)-tartaric acid), as histidine acid phosphatases are classified according to their sensitivity to tartate inhibition. The steps of the protocol consist of pelleting cells in suspension, in this case Leishmania promastigotes, washing twice with HEPES buffer, resuspending the cells in the substrate reaction mixture and terminating the reaction by the addition of 0.5 N NaOH. The cells are removed by centrifugation and the absorbance of the reaction product (p-nitrophenolate=pNP) in the supernatant is measured at 405 nm. The enzymatic activity (A405 values) is normalized for the mean number of cells/ml used for each independent experiment.

5.
Biochem J ; 467(3): 473-86, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25695743

ABSTRACT

Acid ecto-phosphatase activity has been implicated in Leishmania donovani promastigote virulence. In the present study, we report data contributing to the molecular/structural and functional characterization of the L. donovani LdMAcP (L. donovani membrane acid phosphatase), member of the histidine acid phosphatase (HAcP) family. LdMAcP is membrane-anchored and shares high sequence identity with the major secreted L. donovani acid phosphatases (LdSAcPs). Sequence comparison of the LdMAcP orthologues in Leishmania sp. revealed strain polymorphism and species specificity for the L. donovani complex, responsible for visceral leishmaniasis (Khala azar), proposing thus a potential value of LdMAcP as an epidemiological or diagnostic tool. The extracellular orientation of the LdMAcP catalytic domain was confirmed in L. donovani promastigotes, wild-type (wt) and transgenic overexpressing a recombinant LdMAcP-mRFP1 (monomeric RFP1) chimera, as well as in transiently transfected mammalian cells expressing rLdMAcP-His. For the first time it is demonstrated in the present study that LdMAcP confers tartrate resistant acid ecto-phosphatase activity in live L. donovani promastigotes. The latter confirmed the long sought molecular identity of at least one enzyme contributing to this activity. Interestingly, the L. donovani rLdMAcP-mRFP1 promastigotes generated in this study, showed significantly higher infectivity and virulence indexes than control parasites in the infection of J774 mouse macrophages highlighting thereby a role for LdMAcP in the parasite's virulence.


Subject(s)
Acid Phosphatase/chemistry , Acid Phosphatase/metabolism , Leishmania donovani/enzymology , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Acid Phosphatase/genetics , Animals , Cell Line , Conserved Sequence , Genes, Protozoan , HeLa Cells , Humans , Leishmania/enzymology , Leishmania/genetics , Leishmania/pathogenicity , Leishmania donovani/genetics , Leishmania donovani/pathogenicity , Macrophages/parasitology , Mice , Models, Molecular , Molecular Sequence Data , Phylogeny , Protozoan Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Species Specificity , Virulence
6.
Arch Biochem Biophys ; 567: 83-93, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25575783

ABSTRACT

Colivelin (CL), first reported in 2005, is the most potent member of the humanin family of neuroprotective peptides with in vitro and in vivo rescuing action against insults associated with Alzheimer's disease (AD). The objective of the present work is the design, synthesis and characterization of specific CL derivatives that can be used as molecular probes in the investigation of the unknown mechanism of CL action. Within this framework, three CL derivatives bearing suitable tags, i.e., the fluorescent moiety FITC, the streptavidin-counterpart biotinyl-group, and the (99m)Tc-radiometal chelating unit dimethylGly-Ser-Cys, were developed and subsequently applied in biological evaluation experiments. Specifically, the FITC-labeled derivative of CL was used in confocal microscopy, where specific binding at the periphery of F11 cells was observed; the biotin-labeled derivative of CL was used in an in-house developed ELISA-type assay, where specific and concentration-dependent binding with the ß-amyloid peptide of AD was shown; finally, the (99m)Tc-radiolabeled derivative of CL was used in in vivo biodistribution studies in healthy Swiss Albino mice, where 0.58% of the radioactivity administered was measured in the mouse brain 2min after injection. The above first successful applications of the CL probes demonstrate their potential to contribute in the field of neuroprotective peptides.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemical synthesis , Intracellular Signaling Peptides and Proteins/pharmacology , Molecular Probes/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Technetium , Amino Acid Sequence , Animals , Chemistry Techniques, Synthetic , Drug Design , Ganglia, Spinal/cytology , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/pharmacokinetics , Male , Mice , Microscopy, Fluorescence , Molecular Sequence Data , Neurons/cytology , Neurons/drug effects , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Rats , Technetium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...