Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 243: 117835, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38052358

ABSTRACT

In Greece, there is no organized practice in agricultural and animal wastes management. Their exploitation is still set aside, due mainly to economic reasons and lack of incentives for their efficient utilization. Therefore, in the present work a technoeconomic assessment for the environmentally friendly useful exploitation of biomass residues produced in the Prefectures of Ilia and Achaia (Western Greece) for the generation of energy by an integrated anaerobic digestion (AD)-pyrolysis processing plant was carried out. The processed biomass of the AD unit is corn residues and cattle manure, while the feedstock of pyrolysis unit is olive tree prunings. The residues will be transferred to collection areas by field tractors. Then an integrated harvester is used and afterwards, the residues are discharged from the lifting bin of the harvester to trucks and are transported to the processing unit. The total fixed capital for a capacity of 328,716 t/y is equal to 11.5 M€, while the initial working capital is equal to 2.1 M€. The total operational cost of this investment is estimated at 18.3 M€/y, the projected revenues amount to 21.4 M€/y and the net profit is equal to 3.1 M€/y. The return on investment is estimated at 23% and the payback period becomes equal to 4.4 years. From the sensitivity analysis becomes apparent that the capacity, the incentive cost, the fuel price, the products price and the total fixed capital affect significantly the investment characteristics of the proposed AD-pyrolysis processing unit. The amount of the expected profit is considered quite significant, and the evaluation criteria (return on investment and payback period) advocate for a more detailed examination of the investment plan, in the direction of undertaking the project.


Subject(s)
Biofuels , Pyrolysis , Animals , Cattle , Biomass , Anaerobiosis , Manure
2.
J Environ Manage ; 347: 119050, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37751664

ABSTRACT

Upgrading of waste nitrogen sources is considered as an important approach to promote sustainable development. In this study, a multifunctional bio-electrochemical system with three chambers was established, innovatively achieving 2.02 g/L in-situ microbial protein (MP) production via hydrogen-oxidizing bacteria (HOB) in the protein chamber (middle chamber), along with over 2.9 L CO2/(L·d) consumption rate. Also, 69% chemical oxygen demand was degraded by electrogenic bacteria in the anode chamber, resulting in the 394.67 J/L electricity generation. Focusing on the NH4+-N migration in the system, the current intensity contributed 4%-9% in the anode and protein chamber, whereas, the negative effect of -6.69% on contribution was shown in the cathode chamber. On the view of kinetics, NH4+-N migration in anode and cathode chambers was fitted well with Levenberg-Marquardt equation (R2 > 0.92), along with the well-matched results of HOB growth in the protein chamber based on Gompertz model (R2 > 0.99). Further evaluating MPs produced by HOB, 0.45 g/L essential amino acids was detected, showing the better amino acid profile than fish and soybean. Multifunctional bio-electrochemical system revealed the economic potential of producing 6.69 €/m3 wastewater according to a simplified economic evaluation.


Subject(s)
Bioelectric Energy Sources , Animals , Bioelectric Energy Sources/microbiology , Nitrogen/metabolism , Electricity , Wastewater , Bacteria/metabolism , Hydrogen , Electrodes
3.
J Environ Manage ; 319: 115719, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35849928

ABSTRACT

Efficient and harmless disposal of landfill leachate has attracted increasing attention. In this study, the bio-electro-Fenton method was investigated and developed to degrade the organic compounds in landfill leachate by hydroxyl radical oxidation. The optimal operational parameters (i.e., pH and external voltage) of the bio-electro-Fenton system were detected. Under the conditions of pH 2, 0.6 V, the highest total chemical oxygen demand (COD) decrement efficiency was obtained (about 70%), with apparent removal constant at 6 h (kapp-6h) of about 0.12 h-1. Subsequently, to further increase the degradation efficiency, functionalized carbon black and functionalized carbon nanotube (FCNT) were prepared as catalysts for the cathode electrode modification. With 0.4 mg/cm2 FCNT coated on the cathode electrode, 91.3% of the organic compounds were degraded, remaining only 84 mg/L COD (kapp-6h = 0.24 h-1). In all the reactors, the COD was mainly decreased in 0-6 h, contributing to over 68% of the total degradation efficiency. In the bio-electro-Fenton system, the bio-anode electrode could enhance H2O2 production and the conversion between Fe2+ and Fe3+ by strengthening electrons generation and transportation via the oxidation of organics by biofilms (dominant with Geobacter) covered on the carbon brush.


Subject(s)
Water Pollutants, Chemical , Biological Oxygen Demand Analysis , Electrodes , Hydrogen Peroxide/chemistry , Iron/chemistry , Organic Chemicals , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
4.
Bioresour Technol ; 354: 127165, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35439562

ABSTRACT

Experimental investigation and model simulation was combined to identify the effect of metal ions on mitigating ammonia inhibition during anaerobic digestion. Five metal ions (Ca, Mg, Cu, Zn, Fe) were tested in reactors with 1 g-glucose/L/d and 5 g-N/L under fed batch operation. Ca addition was considered the optimal approach with a 25% increment in methane production via balanced-strengthening dehydrogenases and reinforcing protein-binding structure. Gene-sequencing results suggested 50% and 15% increment in acetotrophic-related and hydrogenotrophic-related dehydrogenases, respectively, after Ca addition. The Anaerobic Digestion Model No.1 was modified by introducing lactate-related reactions, syntrophic acetate oxidation process, and kinetic equation of metal ions, with satisfactory predictions of methane and intermediates (R2 > 0.80). The lowest affinity constant KI_MI value was obtained with Ca supplement, indicating the highest conversion rate of substrates to methane. The model evaluation revealed the balanced ratio on the enzyme contribution of acetotrophic to hydrogenotrophic methanogenesis.


Subject(s)
Ammonia , Calcium , Anaerobiosis , Bioreactors , Ions , Methane , Oxidoreductases
5.
Water Res ; 215: 118244, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35259562

ABSTRACT

Bioaugmentation is an attractive method to improve methane production (MP) in the anaerobic digestion (AD) process. In this study, to tackle the ammonia inhibition problem, a long-term (operating over 6 months) acclimatized consortia and a well-constructed consortia were selected as the bioaugmentation consortia for sequencing batch AD reactors fed with dairy manure and pig manure under mesophilic condition. Similar responses, in terms of the reactor performance and microorganisms structure to the different consortia, were observed with both manure kinds indicating that the effectiveness of bioaugmentation was mainly decided by the composition of the added consortia, not the feedstock. 39 - 49% increment in MP was obtained in the reactors bioaugmented with well-constructed consortia, which was higher than the acclimatized consortia (about 25% increment in MP). Both acetogenesis and methanogenesis (advantageous) steps were stimulated with well-constructed consortia bioaugmentation. According to key functional enzyme analysis, the increment of glycine hydroxymethyltransferase and phosphoglycerate mutase might be the critical point in the bioaugmented AD system. Based on the higher functional contribution rate of the well-constructed consortia bioaugmentation reactors, Methanosarcina could have expressed more comprehensive functions or performed stronger activities in different functions than Methanosaeta.


Subject(s)
Ammonia , Manure , Anaerobiosis , Animals , Biofuels , Bioreactors , Methane , Swine
6.
Chemosphere ; 296: 133985, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35176306

ABSTRACT

Greece produces significant amounts of residual biomass due to its intense agricultural and agro-industrial sector. The anaerobic digestion process has been frequently considered as the best environmental and economic solution for energy recovery from different biodegradable waste such as agricultural waste, livestock manure, agro-industrial waste, as well as for their co-digestion. The aim of this study was the assessment of biochemical methane potential (BMP) of biomass feedstocks representative of Northern and Southern Greece, which are available during the fall/winter and spring/summer seasons, through the implementation of BMP assays. The raw residues evaluated in the current work included: (a) crop residues (corn silage and unsuitable for human consumption watermelon), (b) agro-industrial residues (malt, tomato processing residues, orange peels and olive pomace) and (c) livestock (cattle) manure. Tests of both single substrates and various mixtures were conducted for the evaluation of their methane yields. The results of the mono-substrates are in accordance with other studies in the literature, with watermelon presenting the highest methane potential (421.0 ± 3.4 ml CH4/g VSadded). After the evaluation of the mixtures and mono-substrates results, the most promising mixtures seemed to be the following: a) for Northern Greece, 10% corn silage-80% cattle manure-10% malt, b) for Southern Greece spring/summer season, 10% corn silage-14% cattle manure-66% watermelon-10% tomato processing residues, and c) for Southern Greece fall/winter season, 10% corn silage-57% cattle manure-23% orange peels-10% olive pomace.


Subject(s)
Biofuels , Manure , Anaerobiosis , Animals , Cattle , Greece , Methane , Zea mays/chemistry
7.
Sci Total Environ ; 783: 147581, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34088123

ABSTRACT

This study evaluated the methanogenic performance of typical substrates (acetate, formate, H2/CO2, and glucose) under low and high ammonia levels and the Anaerobic Digestion Model No.1 (ADM1) was extended and modified for better simulation and understanding of the process. Formate-utilizing and hydrogen-utilizing methanogenesis showed stronger ammonia resistance than acetate-utilizing methanogenesis (13-23% vs. 34% decrease in methane production (MP)). Model extension, based on foundational experiments fed with three typical precursors (R2 > 0.92), was then validated with glucose degradation experiments, and satisfactory predictions of MP and total volatile fatty acids were obtained (R2 > 0.91). Based on the modified ADM1, the carbon fluxes of glucose degradation were determined, and formate-utilizing methanogenesis showed its importance with a 28-34% contribution of the total methanation, becoming the dominant pathway under high ammonia level. Formate-utilizing methanogenesis also had a thermodynamic advantage among the three pathways. 16S rRNA sequencing suggested a homology between the hydrogen-utilizing and formate-utilizing methanogens. Methanobacterium and Methanobrevibacter were found to be key methanogens, and their enrichment under high ammonia level confirmed the stronger ammonia tolerance of formate-utilizing and hydrogen-utilizing methanogenesis. The microbial characterization and modified ADM1 simulations supported each other.


Subject(s)
Ammonia , Carbon Dioxide , Acetates , Anaerobiosis , Formates , Methane , RNA, Ribosomal, 16S
8.
Water Environ Res ; 93(8): 1370-1380, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33528855

ABSTRACT

The effect of pH regulation in phase I on hydrolysis and acidogenesis rate, metabolites production, microbial community, and the overall energy recovery efficiency during two-phase anaerobic digestion (AD) of food waste (FW) was investigated. pH strongly affected the acidogenesis rate and the yield of the fermentation products. The highest acidogenesis efficiency (60.4%) and total volatile fatty acids (VFA)/ethanol concentration (12.4 g/L) were obtained at pH 8 during phase I. Microbial community analysis revealed that Clostridium IV was enriched at pH 8, relating to the accumulation of butyrate. Also, Clostridium sensu stricto played a crucial role in hydrogen production and was abundant at pH 6, resulting in the highest hydrogen yield (212.2 ml/g VS). In phase II, the highest cumulative methane yield (412.6 ml/g VS) was obtained at pH 8. By considering the hydrogen and methane production stages, the highest energy yield (22.8 kJ/g VS, corresponding to a 76.4% recovery efficiency) was generated at pH 8, which indicates that pH 8 was optimal for energy recovery during two-phase AD of FW. Overall, the results demonstrated the possibility of increasing the energy recovery from FW by regulating the pH in the hydrolysis/acidogenesis phase based on the two-phase AD system. PRACTITIONER POINTS: pH 8 was suitable for hydrolysis, acidogenesis, and methanogenesis. High hydrogen yields were obtained at pH 5-8 (about 200 ml/d). Clostridium sensu stricto might have played a crucial role in hydrogen production. High methane production (about 400 ml/g VS) was obtained at pH 7-9. pH 8 was optimal for energy recovery from FW with an efficiency of 76.4% (22.8 kJ/g VS).


Subject(s)
Food , Refuse Disposal , Anaerobiosis , Bioreactors , Hydrogen-Ion Concentration
9.
Environ Sci Pollut Res Int ; 21(1): 268-98, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24068561

ABSTRACT

The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.


Subject(s)
Industrial Waste/analysis , Plant Oils/economics , Waste Disposal, Fluid/methods , Waste Products/analysis , Water Pollution/prevention & control , Adsorption , European Union , Industrial Waste/prevention & control , Industrial Waste/statistics & numerical data , Olea , Olive Oil , Solid Waste , Waste Products/statistics & numerical data , Water Pollution/analysis , Water Pollution/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...