Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 287: 120065, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34678263

ABSTRACT

AIMS: Despite continuous improvement in the treatment of acute leukemia, new therapies are still needed to overcome resistance and reduce adverse effects. The aim of this work was to study the tumor-suppressive effects of 4-methylumbelliferone (4MU) in human acute leukemia cell lines. In addition, we aimed to address the extent of these effects in relation to the inhibition of hyaluronic acid (HA) synthesis. MAIN METHODS: HA levels were measured by an ELISA-like assay. Human acute leukemia cell lines were treated with 4MU, HA or their combination. Cell proliferation was assessed by the [3H]-Tdr uptake assay, metabolic activity by the XTT assay and cell death was determined by DAPI, AO/EB and AnnexinV-PE/7-AAD staining. Senescence induction was evaluated by SA-ß-Gal and C12FDG staining. Total and surface RHAMM expression levels were assessed by flow cytometry and fluorescence microscopy. KEY FINDINGS: 4MU reduced metabolic activity and inhibited cell proliferation in all leukemia cells, and these effects were explained by the induction of senescence or cell death depending on the cell line evaluated. Exogenous HA failed to prevent most of the tumor-suppressive effects observed. Results from this work suggest that the tumor-suppressive effects exerted by 4MU would be explained by HA-synthesis-independent mechanisms. SIGNIFICANCE: These findings broaden the knowledge of 4MU as a potential treatment in acute leukemia. We report for the first time the existence of tumor-suppressive effects of 4MU on human acute leukemia cell lines that are independent of its role as HA-synthesis inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Hyaluronic Acid/biosynthesis , Hymecromone/pharmacology , Leukemia, Myeloid, Acute/metabolism , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Dose-Response Relationship, Drug , Humans , Hymecromone/therapeutic use , Jurkat Cells , Leukemia, Myeloid, Acute/drug therapy , U937 Cells
2.
Front Oncol ; 11: 641269, 2021.
Article in English | MEDLINE | ID: mdl-33869030

ABSTRACT

Viruses play an important role in the development of certain human cancers. They are estimated to contribute 16% to all human cancers. Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus to be discovered and is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive T-cell malignancy with poor prognosis. HTLV-1 viral proteins interact with mechanisms and proteins present in host cells for their own benefit, evading the immune system and promoting the establishment of disease. Several viruses manipulate the autophagy pathway to achieve their infective goals, and HTLV-1 is not the exception. HTLV-1 Tax viral protein engages NF-κB and autophagy pathways prone favoring viral replication and T cell transformation. In this review we focus on describing the relationship of HTLV-1 with the autophagy machinery and its implication in the development of ATLL.

3.
Front Oncol ; 10: 622956, 2020.
Article in English | MEDLINE | ID: mdl-33680945

ABSTRACT

Pancreas ductal adenocarcinoma is a highly aggressive cancer with an incredible poor lifespan. Different chemotherapeutic agents' schemes have been tested along the years without significant success. Furthermore, immunotherapy also fails to cope with the disease, even in combination with other standard approaches. Autophagy stands out as a chemoresistance mechanism and is also becoming relevant as responsible for the inefficacy of immunotherapy. In this complex scenario, exosomes have emerged as a new key player in tumor environment. Exosomes act as messengers among tumor cells, including tumor microenvironment immune cells. For instance, tumor-derived exosomes are capable of generating a tolerogenic microenvironment, which in turns conditions the immune system behavior. But also, immune cells-derived exosomes, under non-tolerogenic conditions, induce tumor suppression, although they are able to promote chemoresistance. In that way, NK cells are well known key regulators of carcinogenesis and the inhibition of their function is detrimental for tumor suppression. Additionally, increasing evidence suggests a crosstalk between exosome biogenesis and the autophagy pathway. This mini review has the intention to summarize the available data in the complex relationships between the autophagy pathway and the broad spectrum of exosomes subpopulations in pancreatic cancer, with focus on the NK cells response.

4.
Target Oncol ; 9(1): 25-42, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23430344

ABSTRACT

The ability to modulate balance between cell survival and death is recognized for its great therapeutic potential. Therefore, research continues to focus on elucidation of cell machinery and signaling pathways that control cell proliferation and apoptosis. Conventional chemotherapeutic agents often have a cytostatic effect over tumor cells. New natural or synthetic chemotherapeutic agents have a wider spectrum of interesting antitumor activities that merit in-depth studies. In the present work, we aimed at characterizing the molecular mechanism leading to induction of cell death upon treatment of the lymphoblastoid cell line PL104 with caffeic acid phenylethyl ester (CAPE), MG132 and two conventional chemotherapeutic agents, doxorubicine (DOX) and vincristine (VCR). Our results showed several apoptotic hallmarks such as phosphatidylserine (PS) exposure on the outer leaflet of the cell membrane, nuclear fragmentation, and increase sub-G1 DNA content after all treatments. In addition, all four drugs downregulated survivin expression. CAPE and both chemotherapeutic agents reduced Bcl-2, while only CAPE and MG132 significantly increased Bax level. CAPE and VCR treatment induced the collapse of mitochondrial membrane potential (∆ψm). All compounds induced cytochrome c release from mitochondrial compartment to cytosol. However, only MG132 caused the translocation of Smac/DIABLO. Except for VCR treatment, all other drugs increased reactive oxygen species (ROS) production level. All treatments induced activation of caspases 3/7, but only CAPE and MG132 led to the activation of caspase 9. In conclusion, our results indicate that CAPE and MG132 treatment of PL104 cells induced apoptosis through the mitochondrial intrinsic pathway, whereas the apoptotic mechanism induced by DOX and VCR may proceed through the extrinsic pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caffeic Acids/pharmacology , Leukemia/pathology , Leupeptins/pharmacology , Mitochondria/drug effects , Phenylethyl Alcohol/analogs & derivatives , Adolescent , Adult , Caffeic Acids/therapeutic use , Child , Child, Preschool , Drugs, Investigational/pharmacology , Female , Humans , Leukemia/drug therapy , Leupeptins/therapeutic use , Male , Middle Aged , Mitochondria/physiology , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use , Tumor Cells, Cultured , Young Adult
5.
Pancreatology ; 10(1): 19-26, 2010.
Article in English | MEDLINE | ID: mdl-20299819

ABSTRACT

BACKGROUND/AIM: Autophagy is a degradation process of cytoplasmic cellular constituents. We have described the vacuole membrane protein-1 (VMP1) whose expression triggers autophagy in mammalian cells. The aim of this study was to analyze the role of autophagy in human pancreatic cancer cell death. METHODS/RESULTS: Here we show that gemcitabine, the standard chemotherapy for pancreatic cancer, induced autophagy in PANC-1 and MIAPaCa-2 cells, as evidenced by the accumulation of acidic vesicular organelles, the recruitment of microtubule-associated protein-1 light chain-3, and electron microscopy. In addition, gemcitabine treatment induced early expression of VMP1 in cancer cells. Gemcitabine also induced apoptosis detected by morphology, annexin V-positive cells, and cleavage of caspase-3. Surprisingly, 3-methyladenine, an autophagy inhibitor, decreased apoptosis in gemcitabine-treated cells, showing that autophagy leads to cancer cell apoptotic death. Finally, VMP1 knockdown decreased autophagy and apoptosis in gemcitabine-treated cancer cells. CONCLUSIONS: The VMP1-autophagy pathway promotes apoptosis in pancreatic cancer cells and mediates gemcitabine-induced cytotoxicity. and IAP.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Deoxycytidine/analogs & derivatives , Membrane Proteins/physiology , Pancreatic Neoplasms/pathology , Adenine/analogs & derivatives , Adenine/pharmacology , Caspase 3/metabolism , Cell Line, Tumor , Deoxycytidine/pharmacology , Gene Knockdown Techniques , Humans , Membrane Proteins/genetics , Pancreatic Neoplasms/metabolism , Vacuoles/metabolism , Gemcitabine
6.
Cell Tissue Res ; 339(3): 597-611, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20119860

ABSTRACT

Sipunculans, a small phylum of coelomated marine worms closely related to polychaete annelids, lack a true circulatory system. We have previously shown that the sipunculan Themiste petricola can form a cellular clot, without congealing, of cell-free coelomic fluid. The clot is formed by the aggregation of large granular leukocytes (LGLs) and may serve not only haemostatic but immune functions, since dissimilar particles may become entrapped within it. We have now evaluated the capacity of a massive clot, induced in vitro by sea water contact, to stop coelomic fluid flow. We have further studied smaller clots induced on glass-slides either with or without the presence of bacteria placed for entrapment within the clot. The fate of clotting LGLs is cell death while forming a cohesive mass, although cytoplasmic and nuclear remnants are shed from the clot. These remnants and any bacteria that avoid clot entrapment or are detached from the clot are engulfed by non-clotting cells that include small granular leukocytes (SGLs) and large hyaline amebocytes (LHAs). Both cell types can be found other than in the clot but SGLs also occur around the clot edges heavily loaded with engulfed material. The cytoskeletal arrangement of SGLs evaluated with phalloidin-rhodamine correspond to motile cells and contrast with that of clotting LGLs that form a massive network of F-actin. Thus, the complementary roles between clotting LGLs and non-clotting SGLs and LHAs act a central immune strategy of Themiste petricola to deal with body wall injury and pathogen intrusion into the coelomic cavity.


Subject(s)
Blood Coagulation/immunology , Hemostasis/immunology , Nematoda/cytology , Nematoda/immunology , Animals , Bacteria/metabolism , Cell Death , Cell Line , Cell Nucleus/metabolism , Cytoskeleton/metabolism , DNA Fragmentation , Flow Cytometry , Hemorheology , Humans , Leukocytes/cytology , Leukocytes/microbiology , Phagocytes , Phagocytosis , Seawater , Yeasts/metabolism
7.
Transl Oncol ; 2(1): 46-58, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19252751

ABSTRACT

Chemotherapy aims to limit proliferation and induce apoptotic cell death in tumor cells. Owing to blockade of signaling pathways involved in cell survival and proliferation, nuclear factor kappaB (NF-kappaB) inhibitors can induce apoptosis in a number of hematological malignancies. The efficacy of conventional chemotherapeutic drugs, such as vincristine (VCR) and doxorubicine (DOX), may be enhanced with combined therapy based on NF-kappaB modulation. In this study, we evaluated the effect of caffeic acid phenylethyl ester (CAPE) and MG-132, two nonspecific NF-kappaB inhibitors, and conventional chemotherapeutics drugs DOX and VCR on cell proliferation and apoptosis induction on a lymphoblastoid B-cell line, PL104, established and characterized in our laboratory. CAPE and MG-132 treatment showed a strong antiproliferative effect accompanied by clear cell cycle deregulation and apoptosis induction. Doxorubicine and VCR showed antiproliferative effects similar to those of CAPE and MG-132, although the latter drugs showed an apoptotic rate two-fold higher than DOX and VCR. None of the four compounds showed cytotoxic effect on peripheral mononuclear cells from healthy volunteers. CAPE- and MG-132-treated bone marrow cells from patients with myeloid and lymphoid leukemias showed 69% (P < .001) and 25% decrease (P < .01) in cell proliferation and 42% and 34% (P < .01) apoptosis induction, respectively. Overall, our results indicate that CAPE and MG-132 had a strong and selective apoptotic effect on tumor cells that may be useful in future treatment of hematological neoplasias.

SELECTION OF CITATIONS
SEARCH DETAIL
...