Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Parasite ; 31: 17, 2024.
Article in English | MEDLINE | ID: mdl-38530210

ABSTRACT

The sterile insect technique (SIT) involves releasing large numbers of sterile males to outcompete wild males in mating with females, leading to a decline in pest populations. In the current study, we conducted a suppression trial in Greece against the invasive dengue vector mosquito Aedes albopictus (Skuse) through the weekly release of sterile males for 22 weeks from June to September 2019. Our approach included the long-distance transport of sterile mosquitoes, and their release at a density of 2,547 ± 159 sterile males per hectare per week as part of an area-wide integrated pest management strategy (AW-IPM). The repeated releases of sterile males resulted in a gradual reduction in egg density, reaching 78% from mid-June to early September. This reduction remained between 70% and 78% for four weeks after the end of the releases. Additionally, in the SIT intervention area, the ovitrap index, representing the percentage of traps containing eggs, remained lower throughout the trial than in the control area. This trial represents a significant advance in the field of mosquito control, as it explores the viability and efficacy of producing and transporting sterile males from a distant facility to the release area. Our results provide valuable insights for future SIT programmes targeting Ae. Albopictus, and the methodology we employed can serve as a starting point for developing more refined and effective release protocols, including the transportation of sterile males over long distances from production units to intervention areas.


Title: Essai sur le terrain de la Technique de l'Insecte Stérile (TIS) ciblant la suppression d'Aedes albopictus en Grèce. Abstract: La technique de l'insecte stérile (TIS) consiste à libérer un grand nombre de mâles stériles pour supplanter les mâles sauvages lors de l'accouplement avec les femelles, entraînant ainsi un déclin des populations de nuisibles. Dans la présente étude, nous avons mené un essai de suppression en Grèce contre le moustique vecteur invasif de la dengue, Aedes albopictus (Skuse), par le biais de la libération hebdomadaire de mâles stériles pendant 22 semaines de juin à septembre 2019. Notre approche comprenait le transport sur de longues distances de moustiques stériles, et leur lâcher à une densité de 2 547 ± 159 mâles stériles par hectare et par semaine dans le cadre d'une stratégie de lutte intégrée contre les nuisibles à l'échelle de la zone (AW-IPM). Les lâchers répétés de mâles stériles ont entraîné une réduction progressive de la densité des œufs, atteignant 78 % de la mi-juin au début septembre. Cette réduction est restée entre 70 % et 78 % pendant quatre semaines après la fin des lâchers. De plus, dans la zone d'intervention de la TIS, l'indice d'oviposition, représentant le pourcentage de pièges contenant des œufs, est resté plus faible que dans la zone témoin tout au long de l'essai. Cet essai représente une avancée significative dans le domaine de la lutte contre les moustiques, car il explore la viabilité et l'efficacité de la production et du transport de mâles stériles depuis une installation éloignée vers la zone de lâcher. Nos résultats fournissent des informations précieuses pour les futurs programmes de TIS ciblant Ae. albopictus et la méthodologie que nous avons utilisée pourra servir de point de départ pour développer des protocoles de libération plus raffinés et plus efficaces, y compris le transport de mâles stériles sur de longues distances depuis les unités de production jusqu'aux zones d'intervention.


Subject(s)
Aedes , Insecta , Animals , Female , Male , Greece , Mosquito Control
2.
Sci Rep ; 14(1): 6010, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472384

ABSTRACT

The Mediterranean fruit fly (medfly) (Ceratitis capitata, Diptera: Tephritidae), is an extremely polyphagous pest that threatens the fruit production and trading industry worldwide. Monitoring C. capitata populations and analysing its dynamics and phenology is considered of outmost importance for designing and implementing sound management approaches. The aim of this study was to investigate the factors regulating the population dynamics of the C. capitata in a coastal and semi-mountainous area. We focused on effects of topography (e.g. elevation), host presence and seasonal patterns of ripening on the phenological patterns considering data collected in 2008. The experimental area is characterized by mixed fruit orchards, and Mediterranean climate with mild winters. Two trap types were used for population monitoring. The female targeted McPhail type and the male targeted Jackson type. Traps were placed in farms located at different elevations and landscape morphology (coastal and semi-mountainous areas). The main crops included citrus, apples, peaches, plums, pears, figs, quinces and apricots. Adult captures were first recorded in May, peaked in mid-summer and mid-autumn and almost ceased at the end of the season (January 2008). Captures in the coastal areas preceded that of highlands by 15 days. Most of the adults detected during the fruit ripening of late stone fruit cultivars (first peak) and citrus (second peak). The probability of capturing the first adults preceded almost three weeks the peak of adult captures either considering the elevation or host focus analyses. The results provide valuable information on the seasonal population trend of C. capitata in mixed fruit Mediterranean orchards and can support the set-up of IPM systems in areas with various landscapes and different hosts throughout the fruit growing season.


Subject(s)
Ceratitis capitata , Citrus , Malus , Tephritidae , Female , Male , Animals , Ceratitis capitata/physiology , Seasons , Climate
3.
Allergy ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38366695

ABSTRACT

Systematic review using GRADE of the impact of exposure to volatile organic compounds (VOCs), cleaning agents, mould/damp, pesticides on the risk of (i) new-onset asthma (incidence) and (ii) adverse asthma-related outcomes (impact). MEDLINE, EMBASE and Web of Science were searched for indoor pollutant exposure studies reporting on new-onset asthma and critical and important asthma-related outcomes. Ninety four studies were included: 11 for VOCs (7 for incidenceand 4 for impact), 25 for cleaning agents (7 for incidenceand 8 for impact), 48 for damp/mould (26 for incidence and 22 for impact) and 10 for pesticides (8 for incidence and 2 for impact). Exposure to damp/mould increases the risk of new-onset wheeze (moderate certainty evidence). Exposure to cleaning agents may be associated with a higher risk of new-onset asthma and with asthma severity (low level of certainty). Exposure to pesticides and VOCs may increase the risk of new-onset asthma (very low certainty evidence). The impact on asthma-related outcomes of all major indoor pollutants is uncertain. As the level of certainty is low or very low for most of the available evidence on the impact of indoor pollutants on asthma-related outcomes more rigorous research in the field is warranted.

4.
Allergy ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38311978

ABSTRACT

Air pollution is one of the biggest environmental threats for asthma. Its impact is augmented by climate change. To inform the recommendations of the EAACI Guidelines on the environmental science for allergic diseases and asthma, a systematic review (SR) evaluated the impact on asthma-related outcomes of short-term exposure to outdoor air pollutants (PM2.5, PM10, NO2 , SO2 , O3 , and CO), heavy traffic, outdoor pesticides, and extreme temperatures. Additionally, the SR evaluated the impact of the efficacy of interventions reducing outdoor pollutants. The risk of bias was assessed using ROBINS-E tools and the certainty of the evidence by using GRADE. Short-term exposure to PM2.5, PM10, and NO2 probably increases the risk of asthma-related hospital admissions (HA) and emergency department (ED) visits (moderate certainty evidence). Exposure to heavy traffic may increase HA and deteriorate asthma control (low certainty evidence). Interventions reducing outdoor pollutants may reduce asthma exacerbations (low to very low certainty evidence). Exposure to fumigants may increase the risk of new-onset asthma in agricultural workers, while exposure to 1,3-dichloropropene may increase the risk of asthma-related ED visits (low certainty evidence). Heatwaves and cold spells may increase the risk of asthma-related ED visits and HA and asthma mortality (low certainty evidence).

5.
Aging Cell ; 23(4): e14080, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38268242

ABSTRACT

The relationship between the early-age activity of Mediterranean fruit flies (medflies) or other fruit flies and their lifespan has not been much studied, in contrast to the connections between lifespan and diet, sexual signaling, and reproduction. The objective of this study is to assess intra-day and day-to-day activity profiles of female Mediterranean fruit flies and their role as biomarker of longevity as well as to explore the relationships between these activity profiles, diet, and age-at-death throughout the lifespan. We use advanced statistical methods from functional data analysis (FDA). Three distinct patterns of activity variations in early-age activity profiles can be distinguished. A low-caloric diet is associated with a delayed activity peak, while a high-caloric diet is linked with an earlier activity peak. We find that age-at-death of individual medflies is connected to their activity profiles in early life. An increased risk of mortality is associated with increased activity in early age, as well as with a higher contrast between daytime and nighttime activity. Conversely, medflies are more likely to have a longer lifespan when they are fed a medium-caloric diet and when their daily activity is more evenly distributed across the early-age span and between daytime and nighttime. The before-death activity profile of medflies displays two characteristic before-death patterns, where one pattern is characterized by slowly declining daily activity and the other by a sudden decline in activity that is followed by death.


Subject(s)
Ceratitis capitata , Longevity , Animals , Female , Aging , Reproduction , Drosophila , Biomarkers
6.
Sci Rep ; 14(1): 467, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172200

ABSTRACT

Ceratitis capitata, a major agricultural pest, is currently expanding its geographic distribution to northern, temperate areas of Europe. Its seasonal biology and invasion success depend on temperature, humidity and host availability. In coastal warmer Mediterranean regions and cooler temperature areas, bitter oranges and apples serve as overwintering hosts during the larval stage. We assessed the overwintering capacity of C. capitata populations obtained from different areas of the northern hemisphere by studying the survival and development rates of immature stages in both fruits under laboratory conditions. Eggs from each population were artificially inserted in the flesh of the two hosts and kept at 15, 20, or 25 °C until pupation and adult emergence. Climatic analysis of the area of the population origin showed combined effects of latitude, host and macroclimatic variables on immature survival and development rates. Egg to adult survival rates and developmental duration were longer in apples than in bitter oranges. For populations originated from southern-warmer areas, egg to adult developmental duration was prolonged and adult emergence reduced at 15 °C compared to those populations obtained from northern regions. Our findings reveal varying plastic responses of medfly populations to different overwintering hosts and temperatures highlighting the differential overwintering potential as larvae within fruits. This study contributes towards better understanding the medfly invasion dynamics in temperate areas of Northern Europe and other parts of the globe with similar climates.


Subject(s)
Ceratitis capitata , Citrus , Animals , Ceratitis capitata/physiology , Larva , Temperature , Fruit
7.
Nat Commun ; 15(1): 856, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287003

ABSTRACT

Bilayer graphene encapsulated in tungsten diselenide can host a weak topological phase with pairs of helical edge states. The electrical tunability of this phase makes it an ideal platform to investigate unique topological effects at zero magnetic field, such as topological superconductivity. Here we couple the helical edges of such a heterostructure to a superconductor. The inversion of the bulk gap accompanied by helical states near zero displacement field leads to the suppression of the critical current in a Josephson geometry. Using superconducting quantum interferometry we observe an even-odd effect in the Fraunhofer interference pattern within the inverted gap phase. We show theoretically that this effect is a direct consequence of the emergence of helical modes that connect the two edges of the sample. The absence of such an effect at high displacement field, as well as in bare bilayer graphene junctions, supports this interpretation and demonstrates the topological nature of the inverted gap.

8.
Sci Rep ; 14(1): 2515, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291088

ABSTRACT

The species distributions migration poleward and into higher altitudes in a warming climate is especially concerning for economically important insect pest species, as their introduction can potentially occur in places previously considered unsuitable for year-round survival. We explore the expansion of the climatically suitable areas for a horticultural pest, the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera, Tephritidae), with an emphasis on Europe and California. We reviewed and refined a published CLIMEX model for C. capitata, taking into consideration new records in marginal locations, with a particular focus on Europe. To assess the model fit and to aid in interpreting the meaning of the new European distribution records, we used a time series climate dataset to explore the temporal patterns of climate suitability for C. capitata from 1970 to 2019. At selected bellwether sites in Europe, we found statistically significant trends in increasing climate suitability, as well as a substantial northward expansion in the modelled potential range. In California, we also found a significant trend of northward and altitudinal expansion of areas suitable for C. capitata establishment. These results provide further evidence of climate change impacts on species distributions and the need for innovative responses to increased invasion threats.


Subject(s)
Ceratitis capitata , Tephritidae , Animals , Ceratitis capitata/physiology , Tephritidae/physiology , Europe , Geography , Climate Change
9.
Sensors (Basel) ; 24(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257479

ABSTRACT

Effective damage identification is paramount to evaluating safety conditions and preventing catastrophic failures of concrete structures. Although various methods have been introduced in the literature, developing robust and reliable structural health monitoring (SHM) procedures remains an open research challenge. This study proposes a new approach utilizing a 1-D convolution neural network to identify the formation of cracks from the raw electromechanical impedance (EMI) signature of externally bonded piezoelectric lead zirconate titanate (PZT) transducers. Externally bonded PZT transducers were used to determine the EMI signature of fiber-reinforced concrete specimens subjected to monotonous and repeatable compression loading. A leave-one-specimen-out cross-validation scenario was adopted for the proposed SHM approach for a stricter and more realistic validation procedure. The experimental study and the obtained results clearly demonstrate the capacity of the introduced approach to provide autonomous and reliable damage identification in a PZT-enabled SHM system, with a mean accuracy of 95.24% and a standard deviation of 5.64%.

10.
Parasit Vectors ; 17(1): 24, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238765

ABSTRACT

BACKGROUND: Aedes albopictus (Skuse, 1894) is a vector for pathogens like dengue, chikungunya, and Zika viruses. Its adaptive capacity enables reproduction in temperate climates and development mainly in artificial containers with fresh water in urbanized areas. Nevertheless, breeding in coastal areas may also occur along with its aggressive invasiveness. Global warming and the consequent rise in sea levels will increase saline (> 30 ppt) or brackish (0.5-30 ppt salt) water in coastal regions. To address whether Ae. albopictus can breed in brackish water, we initiated the current study that analyses the survival of immature stages at different salinity concentrations and explores whether carryover effects occur in the resulting adults. This possible adaptation is important when considering the potential for development in new habitats and expansion of one of the world's most invasive species. METHODS: We investigated the influence of salinity on the survival of Ae. albopictus larvae and adults under laboratory-controlled conditions. First instar larvae were exposed to different salinity concentrations (0 to 30 ppt) and their development time, pupation, adult emergence, and overall survival were monitored daily. We used Kaplan-Meier and Cox regression models to analyze the survival rates at different salinity levels. Furthermore, life tables were constructed under each salinity concentration. RESULTS: Increasing salt concentrations significantly increased the mortality risk during immature development, while no significant effect was observed on adult mortality risk. A comparison between distilled and bottled water revealed a notable increase in overall mortality risk for individuals developing in distilled water. However, no significant effects were found when analyzing survival from the first larval stage to adult emergence and adult lifespan. The life expectancy of immature stages decreased with increasing salt concentrations, although salinity concentration did not significantly impact adult life expectancy. CONCLUSIONS: Our findings suggest that Ae. albopictus, previously considered freshwater species, can successfully develop and survive in brackish waters, even in the absence of characteristic structures found in euryhaline species. These adaptations may enable Ae. albopictus to establish new breeding sites and colonize unexplored territories. Knowledge of these physiological adaptations of Ae. albopictus to salinity should be pursued to increase the range of control of the species, and to make more accurate predictions of its dispersal and vectoring ability.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Aedes/physiology , Larva , Longevity , Mosquito Vectors , Salinity , Water/chemistry
11.
Annu Rev Entomol ; 69: 355-373, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37758223

ABSTRACT

Global trade in fresh fruit and vegetables, intensification of human mobility, and climate change facilitate fruit fly (Diptera: Tephritidae) invasions. Life-history traits, environmental stress response, dispersal stress, and novel genetic admixtures contribute to their establishment and spread. Tephritids are among the most frequently intercepted taxa at ports of entry. In some countries, supported by the rules-based trade framework, a remarkable amount of biosecurity effort is being arrayed against the range expansion of tephritids. Despite this effort, fruit flies continue to arrive in new jurisdictions, sometimes triggering expensive eradication responses. Surprisingly, scant attention has been paid to biosecurity in the recent discourse about new multilateral trade agreements. Much of the available literature on managing tephritid invasions is focused on a limited number of charismatic (historically high-profile) species, and the generality of many patterns remains speculative.


Subject(s)
Drosophila , Life History Traits , Animals , Humans , Climate Change , Nonoxynol
12.
Sci Total Environ ; 912: 169443, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38114031

ABSTRACT

A major component of mosquito's climate change response is their heat tolerance, and any ability to rapidly adjust to extreme environmental conditions through phenotypic plasticity. The excessive use of insecticides for the control of major mosquito species leads to resistant populations, however it is largely unclear if this concurrently impacts thermal stress resistance and their potential to adjust tolerance via phenotypic plasticity. Culex pipiens pipiens, Culex pipiens molestus and Aedes albopictus populations obtained from the same region were subjected for 12 generations to selection trials to larvicides Diflubenzuron (DFB) and Bacillus thuringiensis subsp. israelensis (Bti) to develop insecticide resistance. Adults emerging from the selected populations were acclimated at different temperatures and the upper and lower critical thermal limits (CTmax and CTmin) were estimated using dynamic thermal assays. In addition, the supercooling points (SCPs) of non-acclimated adults of resistant and control populations were determined. Our results revealed marked differences in thermal response among the three species, the different acclimation regimes and sexes. Aedes albopictus was more resistant in high than low temperatures compared to both Culex pipiens biotypes. Culex forms responded similarly to heat but differently to cold stress. In both forms, females responded better than males to all thermal stressors. Acclimation at higher and lower temperatures improves CTmax and CTmin values, respectively in both insecticide resistant and control populations of all three species. Overall, selection to insecticides did not affect the thermal performance of adults. Hence, insecticide-resistant mosquito populations perform similarly to untreated ones and are capable of readily adapting to new environmental changes rising concerns regarding their geographic range expansion and disease transmission globally.


Subject(s)
Aedes , Culex , Insecticides , Female , Animals , Insecticides/pharmacology , Insecticide Resistance
13.
Biology (Basel) ; 12(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37997978

ABSTRACT

Cold tolerance of adult medflies has been extensively studied but the effect of subfreezing temperatures on the immature stages remains poorly investigated, especially as far as different populations are regarded. In this study, we estimated the acute cold stress response of three geographically divergent Mediterranean fruit fly populations originating from Greece (Crete, Volos) and Croatia (Dubrovnik) by exposing immature stages (eggs, larvae, pupae) to subfreezing temperatures. We first determined the LT50 for each immature stage following one hour of exposure to different temperatures. Then eggs, larvae and pupae of the different populations were exposed to their respective LT50 for one hour (LT50 = -11 °C, LT50 = -4.4 °C, LT50 = -5 °C for eggs, larvae and pupae, respectively). Our results demonstrate that populations responded differently depending on their developmental stage. The population of Dubrovnik was the most cold-susceptible at the egg stage, whereas in that of Crete it was at the larval and pupal stage. The population of Volos was the most cold-tolerant at all developmental stages. The egg stage was the most cold-tolerant, followed by pupae and finally the 3rd instar wandering larvae. This study contributes towards understanding the cold stress response of this serious pest and provides data for important parameters that determine its successful establishment to unfavorable environments with an emphasis on range expansion to the northern, more temperate regions of Europe.

14.
Insects ; 14(10)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37887840

ABSTRACT

Several artificial larval diets have been developed, evaluated and used for mass-rearing of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera: Teprhitidae). There are several efforts to reduce the cost of rearing and optimize the quality of the produced sterile males that are destined for release in sterile insect release programs. Survival, growth, longevity and reproductive capacity of sterile males are strongly connected with the most expensive ingredient, the brewer's yeast (protein), in the larval diet. The current study focused on settling the optimal content of brewer's yeast in a liquid diet and a gel diet. Egg hatch rates, developmental duration of immatures, pupation rate, pupae and adult survival were recorded as indicators of quantity and quality of the produced adults. Egg hatch was higher and larval developmental duration longer in the gel diet. In contrast to the liquid diet, an increase in brewer's yeast concentration was correlated with increased pupation rate and pupae survival in the gel diet. Reducing brewer's yeast up to 50% of its initial quantity had no significant effect on the survival of the emerging adults regardless of the diet type. Our findings may contribute to the production of low-cost and effective diets for use in mass-rearing facilities of medflies.

15.
Nano Lett ; 23(20): 9508-9514, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37844301

ABSTRACT

Bilayer graphene (BLG) was recently shown to host a band-inverted phase with unconventional topology emerging from the Ising-type spin-orbit interaction (SOI) induced by the proximity of transition metal dichalcogenides with large intrinsic SOI. Here, we report the stabilization of this band-inverted phase in BLG symmetrically encapsulated in tungsten diselenide (WSe2) via hydrostatic pressure. Our observations from low temperature transport measurements are consistent with a single particle model with induced Ising SOI of opposite sign on the two graphene layers. To confirm the strengthening of the inverted phase, we present thermal activation measurements and show that the SOI-induced band gap increases by more than 100% due to the applied pressure. Finally, the investigation of Landau level spectra reveals the dependence of the level-crossings on the applied magnetic field, which further confirms the enhancement of SOI with pressure.

16.
J Therm Biol ; 117: 103677, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37643512

ABSTRACT

Understanding the thermal biology of insects is of increasing importance for predicting their geographic distribution, particularly in light of current and future global temperature increases. Within the limits set by genetic makeup, thermal tolerance is affected by the physiological conditioning of individuals (e.g., through acclimation). Considering this phenotypic plasticity may add to accurately estimating changes to the distribution of insects under a changing climate. We studied the effect of thermal acclimation on cold and heat tolerance of the peach fruit fly (Bactrocera zonata) - an invasive, polyphagous pest that is currently expanding through Africa and the Middle East. Females and males were acclimated at 20, 25 and 30 °C for up to 19 days following adult emergence. The critical thermal minimum (CTmin) and maximum (CTmax) were subsequently recorded as well adult survival following acute exposure to chilling (0 or -3 °C for 2 h). Additionally, we determined the survival of pupae subjected for 2 h to temperatures ranging from -12 °C to 5 °C. We demonstrate that acclimation at 30 °C resulted in significantly higher CTmax and CTmin values (higher heat resistance and lower cold resistance, respectively). Additionally, adult recovery following exposure to -3 °C was significantly reduced following acclimation at 30 °C, and this effect was significantly higher for females. Pupal mortality increased with the decrease in temperature, reaching LT50 and LT95 values following exposure to -0.32 °C and -6.88 °C, respectively. Finally, we found that the survival of pupae subjected to 0 and 2 °C steadily increased with pupal age. Our findings substantiate a physiological foundation for understanding the current geographic range of B. zonata. We assume that acclimation at 30 °C affected the thermal tolerance of the flies partly through modulating feeding and metabolism. Tolerance to chilling during the pupal stage probably changed according to temperature-sensitive processes occurring during metamorphosis, rendering younger pupae more sensitive to chilling.

17.
Pest Manag Sci ; 79(11): 4153-4161, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37309691

ABSTRACT

BACKGROUND: Thermal history may induce phenotypic plasticity in traits that affect performance and fitness. One type of plastic response triggered by thermal history is acclimation. Because flight is linked to movement in the landscape, trapping and detection rates, and underpins the success of pest management tactics, it is particularly important to understand how thermal history may affect pest insect flight performance. We investigated the tethered-flight performance of Ceratitis capitata, Bactrocera dorsalis and Bactrocera zonata (Diptera: Tephritidae), acclimated for 48 h at 20, 25 or 30 °C and tested at 25 °C. We recorded the total distance, average speed, number of flight events and time spent flying during 2-h tests. We also characterized morphometric traits (body mass, wing shape and wing loading) that can affect flight performance. RESULTS: The main factor affecting most flight traits was body mass. The heaviest species, B. dorsalis, flew further, was faster and stopped less often in comparison with the two other species. Bactrocera species exhibited faster and longer flight when compared with C. capitata, which may be associated with the shape of their wings. Moreover, thermal acclimation had sex- and species-specific effects on flight performance. Flies acclimated at 20 °C stopped more often, spent less time flying and, ultimately, covered shorter distances. CONCLUSION: Flight performance of B. dorsalis is greater than that of B. zonata and C. capitata. The effects of thermal acclimation are species-specific. Warmer acclimation temperatures may allow pest fruit flies to disperse further and faster. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

18.
bioRxiv ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333100

ABSTRACT

The relationship between the early age activity of Mediterranean fruit flies or other fruit flies and their lifespan has not been much studied, in contrast to the connections between lifespan and diet, sexual signaling and reproduction. The objective of this study is to assess intraday and day-to-day activity profiles of female Mediterranean fruit flies and their role as biomarker of longevity as well as to explore the relationships between these activity profiles, diet and age-at-death throughout the lifespan. Three distinct patterns of activity variations in early age activity profiles can be distinguished. A low-caloric diet is associated with a delayed activity peak, while a high-caloric diet is linked with an earlier activity peak. We find that age-at-death of individual medflies is connected to their activity profiles in early life. An increased risk of mortality is associated with increased activity in early age, as well as with a higher contrast between daytime and nighttime activity. Conversely, medflies are more likely to have a longer lifespan when they are fed a medium caloric diet and when their daily activity is more evenly distributed across the early age span and between daytime and nighttime. The before-death activity profile of medflies displays two characteristic before-death patterns, where one pattern is characterized by slowly declining daily activity and the other by a sudden decline in activity that is followed by death.

19.
J Insect Physiol ; 147: 104519, 2023 06.
Article in English | MEDLINE | ID: mdl-37121467

ABSTRACT

The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), holds an impressive record of successful invasion events promoted by globalization in fruit trade and human mobility. In addition, C. capitata is gradually expanding its geographic distribution to cooler temperate areas of the Northern Hemisphere. Cold tolerance of C. capitata seems to be a crucial feature that promotes population establishment and hence invasion success. To elucidate the interplay between the invasion process in the northern hemisphere and cold tolerance of geographically isolated populations of C. capitata, we determined (a) the response to acute cold stress survival of adults, and (b) the supercooling capacity (SCP) of immature stages and adults. To assess the phenotypic plasticity in these populations, the effect of acclimation to low temperatures on acute cold stress survival in adults was also examined. The results revealed that survival after acute cold stress was positively related to low temperature acclimation, except for females originating from Thessaloniki (northern Greece). Adults from the warmer environment of South Arava (Israel) were less tolerant after acute cold stress compared with those from Heraklion (Crete, Greece) and Thessaloniki. Plastic responses to cold acclimation were population specific, with the South Arava population being more plastic compared to the two Greek populations. For SCP, the results revealed that there is little to no correlation between SCP and climate variables of the areas where C. capitata populations originated. SCP was much lower than the lowest temperature individuals are likely to experience in their respective habitats. These results set the stage for asking questions regarding the evolutionary adaptive processes that facilitate range expansions of C. capitata into cooler temperate areas of Europe.


Subject(s)
Ceratitis capitata , Tephritidae , Female , Humans , Animals , Ceratitis capitata/physiology , Cold-Shock Response , Leflunomide , Tephritidae/physiology , Middle East , Europe
20.
PLoS One ; 18(2): e0274586, 2023.
Article in English | MEDLINE | ID: mdl-36802394

ABSTRACT

Olive fruit flies, Bactrocera oleae (Diptera: Tephritidae) reared in the laboratory on an artificial diet are essential for the genetic control techniques against this pest. However, the colony's laboratory adaptation can affect the quality of the reared flies. We used the Locomotor Activity Monitor to track the activity and rest patterns of adult olive fruit flies reared as immatures in olives (F2-F3 generation) and in artificial diet (>300 generations). Counts of beam breaks caused by the adult fly activity were used as an estimation of its locomotor activity levels during the light and dark period. Bouts of inactivity with duration longer than five minutes were considered a rest episode. Locomotor activity and rest parameters were found to be dependent on sex, mating status and rearing history. In virgin flies reared on olives, males were more active than females and increased their locomotor activity towards the end of the light period. Mating decreased the locomotor activity levels of males, but not of female olive-reared flies. Laboratory flies reared on artificial diet had lower locomotor activity levels during the light period and more rest episodes of shorter duration during the dark period compared to flies reared on olives. We describe the diurnal locomotor activity patterns of B. oleae adults reared on olive fruit and on artificial diet. We discuss how locomotor activity and rest pattern differences may affect the laboratory flies' ability to compete with wild males in the field.


Subject(s)
Arthropods , Olea , Tephritidae , Female , Animals , Male , Drosophila , Diet , Fruit
SELECTION OF CITATIONS
SEARCH DETAIL
...