Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 43(8): 2460-2477, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35119173

ABSTRACT

Epilepsy is recognised as a dynamic disease, where both seizure susceptibility and seizure characteristics themselves change over time. Specifically, we recently quantified the variable electrographic spatio-temporal seizure evolutions that exist within individual patients. This variability appears to follow subject-specific circadian, or longer, timescale modulations. It is therefore important to know whether continuously recorded interictaliEEG features can capture signatures of these modulations over different timescales. In this study, we analyse continuous intracranial electroencephalographic (iEEG) recordings from video-telemetry units and find fluctuations in iEEG band power over timescales ranging from minutes up to 12 days. As expected and in agreement with previous studies, we find that all subjects show a circadian fluctuation in their iEEG band power. We additionally detect other fluctuations of similar magnitude on subject-specific timescales. Importantly, we find that a combination of these fluctuations on different timescales can explain changes in seizure evolutions in most subjects above chance level. These results suggest that subject-specific fluctuations in iEEG band power over timescales of minutes to days may serve as markers of seizure modulating processes. We hope that future study can link these detected fluctuations to their biological driver(s). There is a critical need to better understand seizure modulating processes, as this will enable the development of novel treatment strategies that could minimise the seizure spread, duration or severity and therefore the clinical impact of seizures.


Subject(s)
Electroencephalography , Epilepsy , Electrocorticography/methods , Electroencephalography/methods , Humans , Probability , Seizures/diagnosis
2.
Brain ; 145(3): 939-949, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35075485

ABSTRACT

The identification of abnormal electrographic activity is important in a wide range of neurological disorders, including epilepsy for localizing epileptogenic tissue. However, this identification may be challenging during non-seizure (interictal) periods, especially if abnormalities are subtle compared to the repertoire of possible healthy brain dynamics. Here, we investigate if such interictal abnormalities become more salient by quantitatively accounting for the range of healthy brain dynamics in a location-specific manner. To this end, we constructed a normative map of brain dynamics, in terms of relative band power, from interictal intracranial recordings from 234 participants (21 598 electrode contacts). We then compared interictal recordings from 62 patients with epilepsy to the normative map to identify abnormal regions. We proposed that if the most abnormal regions were spared by surgery, then patients would be more likely to experience continued seizures postoperatively. We first confirmed that the spatial variations of band power in the normative map across brain regions were consistent with healthy variations reported in the literature. Second, when accounting for the normative variations, regions that were spared by surgery were more abnormal than those resected only in patients with persistent postoperative seizures (t = -3.6, P = 0.0003), confirming our hypothesis. Third, we found that this effect discriminated patient outcomes (area under curve 0.75 P = 0.0003). Normative mapping is a well-established practice in neuroscientific research. Our study suggests that this approach is feasible to detect interictal abnormalities in intracranial EEG, and of potential clinical value to identify pathological tissue in epilepsy. Finally, we make our normative intracranial map publicly available to facilitate future investigations in epilepsy and beyond.


Subject(s)
Electrocorticography , Epilepsy , Brain/diagnostic imaging , Brain/pathology , Brain Mapping , Electroencephalography , Epilepsy/diagnostic imaging , Epilepsy/pathology , Epilepsy/surgery , Humans , Seizures/pathology , Seizures/surgery
3.
J Neural Eng ; 17(5): 054001, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33022661

ABSTRACT

OBJECTIVE: Direct electrical stimulation of the brain through intracranial electrodes is currently used to probe the epileptic brain as part of pre-surgical evaluation, and it is also being considered for therapeutic treatments through neuromodulation. In order to effectively modulate neural activity, a given neuromodulation design must elicit similar responses throughout the course of treatment. However, it is unknown whether intracranial electrical stimulation responses are consistent across sessions. The objective of this study was to investigate the within-subject, cross-session consistency of the electrophysiological effect of electrical stimulation delivered through intracranial electroencephalography (iEEG). APPROACH: We analysed data from 79 epilepsy patients implanted with iEEG who underwent brain stimulation as part of a memory experiment. We quantified the effect of stimulation in terms of band power modulation and compared this effect from session to session. As a reference, we made the same measurements during baseline periods. MAIN RESULTS: In most sessions, the effect of stimulation on band power could not be distinguished from baseline fluctuations of band power. Stimulation effect was consistent in a third of the session pairs, while the rest had a consistency measure not exceeding the baseline standards. Cross-session consistency was highly correlated with the degree of band power increase, and it also tended to be higher when the baseline conditions were more similar between sessions. SIGNIFICANCE: These findings can inform our practices for designing neuromodulation with greater efficacy when using direct electrical brain stimulation as a therapeutic treatment.


Subject(s)
Electrocorticography , Epilepsy , Brain , Electroencephalography , Epilepsy/diagnosis , Epilepsy/therapy , Humans , Memory
4.
eNeuro ; 7(2)2020.
Article in English | MEDLINE | ID: mdl-32098762

ABSTRACT

Parvalbumin-expressing interneurons in cortical networks are coupled by gap junctions, forming a syncytium that supports propagating epileptiform discharges, induced by 4-aminopyridine. It remains unclear, however, whether these propagating events occur under more natural states, without pharmacological blockade. In particular, we investigated whether propagation also happens when extracellular K+ rises, as is known to occur following intense network activity, such as during seizures. We examined how increasing [K+]o affects the likelihood of propagating activity away from a site of focal (200-400 µm) optogenetic activation of parvalbumin-expressing interneurons. Activity was recorded using a linear 16-electrode array placed along layer V of primary visual cortex. At baseline levels of [K+]o (3.5 mm), induced activity was recorded only within the illuminated area. However, when [K+]o was increased above a threshold level (50th percentile = 8.0 mm; interquartile range = 7.5-9.5 mm), time-locked, fast-spiking unit activity, indicative of parvalbumin-expressing interneuron firing, was also recorded outside the illuminated area, propagating at 59.1 mm/s. The propagating unit activity was unaffected by blockade of GABAergic synaptic transmission, but it was modulated by glutamatergic blockers, and was reduced, and in most cases prevented altogether, by pharmacological blockade of gap junctions, achieved by any of the following three different drugs: quinine, mefloquine, or carbenoxolone. Washout of quinine rapidly re-established the pattern of propagating activity. Computer simulations show qualitative differences between propagating discharges in high [K+]o and 4-aminopyridine, arising from differences in the electrotonic effects of these two manipulations. These interneuronal syncytial interactions are likely to affect the complex electrographic dynamics of seizures, once [K+]o is raised above this threshold level.


Subject(s)
Neocortex , Pharmaceutical Preparations , Gap Junctions , Interneurons , Potassium
5.
J Neurophysiol ; 123(3): 1133-1143, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32023140

ABSTRACT

Neocortical circuits exhibit a rich dynamic repertoire, and their ability to achieve entrainment (adjustment of their frequency to match the input frequency) is thought to support many cognitive functions and indicate functional flexibility. Although previous studies have explored the influence of various circuit properties on this phenomenon, the role of divisive gain modulation (or divisive inhibition) is unknown. This gain control mechanism is thought to be delivered mainly by the soma-targeting interneurons in neocortical microcircuits. In this study, we use a neural mass model of the neocortical microcircuit (extended Wilson-Cowan model) featuring both soma-targeting and dendrite-targeting interneuronal subpopulations to investigate the role of divisive gain modulation in entrainment. Our results demonstrate that the presence of divisive inhibition in the microcircuit, as delivered by the soma-targeting interneurons, enables its entrainment to a wider range of input frequencies. Divisive inhibition also promotes a faster entrainment, with the microcircuit needing less time to converge to the fully entrained state. We suggest that divisive inhibition, working alongside subtractive inhibition, allows for more adaptive oscillatory responses in neocortical circuits and, thus, supports healthy brain functioning.NEW & NOTEWORTHY We introduce a computational neocortical microcircuit model that features two inhibitory neural populations, with one providing subtractive and the other divisive inhibition to the excitatory population. We demonstrate that divisive inhibition widens the range of input frequencies to which the microcircuit can become entrained and diminishes the time needed to reach full entrainment. We suggest that divisive inhibition enables more adaptive oscillatory activity, with important implications for both normal and pathological brain function.


Subject(s)
Interneurons/physiology , Models, Neurological , Neocortex/physiology , Nerve Net/physiology , Neural Inhibition/physiology , Neural Networks, Computer , Animals , Humans
6.
PLoS One ; 15(2): e0221380, 2020.
Article in English | MEDLINE | ID: mdl-32027654

ABSTRACT

Computational studies of the influence of different network parameters on the dynamic and topological network effects of brain stimulation can enhance our understanding of different outcomes between individuals. In this study, a brain stimulation session along with the subsequent post-stimulation brain activity is simulated for a period of one day using a network of modified Wilson-Cowan oscillators coupled according to diffusion imaging based structural connectivity. We use this computational model to examine how differences in the inter-region connectivity and the excitability of stimulated regions at the time of stimulation can affect post-stimulation behaviours. Our findings indicate that the initial inter-region connectivity can heavily affect the changes that stimulation induces in the connectivity of the network. Moreover, differences in the excitability of the stimulated regions seem to lead to different post-stimulation connectivity changes across the model network, including on the internal connectivity of non-stimulated regions.


Subject(s)
Brain/physiopathology , Computer Simulation , Epilepsy/physiopathology , Brain/diagnostic imaging , Case-Control Studies , Connectome , Deep Brain Stimulation/methods , Diffusion Magnetic Resonance Imaging , Epilepsy/diagnostic imaging , Female , Humans , Male , Nerve Net , Parkinson Disease , Time Factors
7.
J Neurosci ; 36(16): 4470-81, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27098691

ABSTRACT

Accurate localization of sound sources is essential for survival behavior in many species. The inferior colliculi (ICs) are the first point in the auditory pathway where cues used to locate sounds, ie, interaural time differences (ITDs), interaural level differences (ILDs), and pinna spectral cues, are all represented in the same location. These cues are first extracted separately on each side of the midline in brainstem nuclei that project to the ICs. Because of this segregation, each IC predominantly represents stimuli in the contralateral hemifield. We tested the hypothesis that commissural connections between the ICs mediate gain control that enhances sound localization acuity. We recorded IC neurons sensitive to either ITDs or ILDs in anesthetized guinea pig, before, during, and following recovery from deactivation of the contralateral IC by cryoloop cooling or microdialysis of procaine. During deactivation, responses were rescaled by divisive gain change and additive shifts, which reduced the dynamic range of ITD and ILD response functions and the ability of neurons to signal changes in sound location. These data suggest that each IC exerts multiplicative gain control and subtractive shifts over the other IC that enhances the neural representation of sound location. Furthermore, this gain control operates in a similar manner on both ITD- and ILD-sensitive neurons, suggesting a shared mechanism operates across localization cues. Our findings reveal a novel dependence of sound localization on commissural processing. SIGNIFICANCE STATEMENT: Sound localization, a fundamental process in hearing, is dependent on bilateral computations in the brainstem. How this information is transmitted from the brainstem to the auditory cortex, through several stages of processing, without loss of signal fidelity, is not clear. We show that the ability of neurons in the auditory midbrain to encode azimuthal sound location is dependent on gain control mediated by the commissure of the inferior colliculi. This finding demonstrates that commissural processing between homologous auditory nuclei, on either side of the midline, enhances the precision of sound localization.


Subject(s)
Acoustic Stimulation/methods , Auditory Pathways/physiology , Mesencephalon/physiology , Sound Localization/physiology , Tectum Mesencephali/physiology , Action Potentials/physiology , Animals , Female , Guinea Pigs , Male
8.
Article in English | MEDLINE | ID: mdl-26465514

ABSTRACT

Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics.


Subject(s)
Models, Neurological , Neural Inhibition , Neurons/physiology , Computer Simulation , Neural Inhibition/physiology , Nonlinear Dynamics , Periodicity
SELECTION OF CITATIONS
SEARCH DETAIL
...