Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746170

ABSTRACT

Type I interferons (IFNs) play a pivotal role in immune response modulation, yet dysregulation is implicated in various disorders. Therefore, it is crucial to develop tools that facilitate the understanding of their mechanism of action and enable the development of more effective anti-IFN therapeutic strategies. In this study, we isolated, cloned, and characterized anti-IFN-α and anti-IFN-ß antibodies (Abs) from peripheral blood mononuclear cells of individuals treated with IFN-α or IFN-ß, harboring confirmed neutralizing Abs. Clones AH07856 and AH07857 were identified as neutralizing anti-IFN-α-specific with inhibition against IFN-α2a, -α2b, and -αK subtypes. Clones AH07859 and AH07866 were identified as neutralizing anti-IFN-ß1a-specific signaling, and able to block Lipopolysaccharide or S100 calcium binding protein A14-induced IFN-ß signaling effects. Cloned Abs bind rhesus but not murine IFNs. The specificity of inhibition between IFN-α and IFN-ß suggests potential for diverse research and clinical applications.

2.
AIDS ; 37(8): 1203-1207, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37070542

ABSTRACT

OBJECTIVE: The aim of this study was to assess the susceptibility of HIV to two HIV monoclonal antibodies (bnAbs), 3BNC117 and 10-1074, in individuals with chronically antiretroviral therapy (ART) suppressed HIV infection. DESIGN: The susceptibility of bnAbs was determined using the PhenoSense mAb Assay, which is a cell-based infectivity assay designed to assess the susceptibility of luciferase-reporter pseudovirions. This assay is the only Clinical Laboratory Improvement Ammendment (CLIA)/College of American Pathologist (CAP) compliant screening test specifically developed for evaluating bnAb susceptibility in people with HIV infection. METHOD: The susceptibility of luciferase-reporter pseudovirions, derived from HIV-1 envelope proteins obtained from peripheral bloodmononuclear cells of 61 ART-suppressed individuals, to 3BNC117 and 10-1074 bnAbs was assessed using the PhenoSense mAb assay. Susceptibility was defined as an IC 90 of <2.0 µg/ml and 1.5 µg/ml for 3BNC117 and 10-1074, respectively. RESULTS: About half of the individuals who were chronically infected and virologically suppressed were found to harbor virus with reduced susceptibility to one or both of the tested bnAbs. CONCLUSIONS: The reduced combined susceptibility of 3BNC117 and 10-1074 highlights a potential limitation of using only two bnAbs for pre-exposure prophylaxis or treatment. Further studies are needed to define and validate the clinical correlates of bnAb susceptibility.


Subject(s)
HIV Infections , HIV-1 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , HIV Antibodies , Antibodies, Monoclonal/therapeutic use , Luciferases
3.
Nat Commun ; 12(1): 3922, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188039

ABSTRACT

Non-invasive biomarkers that predict HIV remission after antiretroviral therapy (ART) interruption are urgently needed. Such biomarkers can improve the safety of analytic treatment interruption (ATI) and provide mechanistic insights into the host pathways involved in post-ART HIV control. Here we report plasma glycomic and metabolic signatures of time-to-viral-rebound and probability-of-viral-remission using samples from two independent cohorts. These samples include a large number of post-treatment controllers, a rare population demonstrating sustained virologic suppression after ART-cessation. These signatures remain significant after adjusting for key demographic and clinical confounders. We also report mechanistic links between some of these biomarkers and HIV latency reactivation and/or myeloid inflammation in vitro. Finally, machine learning algorithms, based on selected sets of these biomarkers, predict time-to-viral-rebound with 74% capacity and probability-of-viral-remission with 97.5% capacity. In summary, we report non-invasive plasma biomarkers, with potential functional significance, that predict both the duration and probability of HIV remission after treatment interruption.


Subject(s)
Biomarkers/blood , HIV Infections/blood , Withholding Treatment , Adult , Anti-Retroviral Agents/administration & dosage , Cohort Studies , DNA, Viral/blood , Female , Glycomics , HIV Infections/drug therapy , HIV Infections/virology , Humans , Inflammation , Macrophages/immunology , Male , Metabolomics , Middle Aged , Proportional Hazards Models , RNA, Viral/blood , Virus Activation
4.
Eur J Immunol ; 51(8): 2051-2061, 2021 08.
Article in English | MEDLINE | ID: mdl-34086344

ABSTRACT

The potential of immunotherapy strategies utilizing broadly neutralizing antibodies (BNAbs), such as 3BNC117 and 10-1074, to limit viral replication while also facilitating clearance of HIV infected cells has heightened interest in identifying the predominant NK effector subset(s) capable of mediating antibody dependent cellular cytotoxicity (ADCC). Utilizing advanced polychromatic flow cytometry, we identified that CD57 positive NK cells from ART-suppressed in People Living With HIV (PLWH) expressed significantly higher levels of the CD16 FcγR receptor, 2B4 ADCC coreceptor, and HLA-DR activation marker while NKG2C positive NK cells expressed significantly higher levels of the CD2 ADCC coreceptor (p < 0.001, n = 32). Functionally, CD57 positive NK cells from ART-suppressed PLWH with either high or low NKG2C expansion exhibited significantly enhanced degranulation and IFN-γ production against heterologous gp120-coated ADCC targets coated with HIV reference plasma compared to CD57 negative NK cells (p = 0.0029, n = 11). CD57 positive NK cells from control donors lacking NKG2C expansion also exhibited significantly more degranulation and IFN-γ production at every timepoint tested against both heterologous ADCC targets (p = 0.019, n = 9) and HIV-1 infected autologous CD4+ primary T cells coated with BNAbs. Together, our data support CD57 positive and NKG2C positive NK cells as the predominant ADCC effector subsets capable of targeting HIV-infected CD4+ cells in the presence of 3BNC117 and 10-1074 immunotherapy.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , HIV Infections/immunology , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Humans
5.
Cancer Med ; 10(13): 4206-4220, 2021 07.
Article in English | MEDLINE | ID: mdl-34117731

ABSTRACT

BACKGROUND: Immune markers have been correlated with prognosis in a variety of solid tumors, including cervical cancer. OBJECTIVE: To review the literature on hematologic and immune markers and their association with recurrence and survival among patients with cervical cancer treated with chemoradiation. EVIDENCE REVIEW: This systematic review was conducted in accordance with PRISMA guidelines via searches of Ovid MEDLINE, Ovid Embase, and the Cochrane Library using keywords regarding cervical cancer, immune markers, and HIV. Studies involving patients treated with cisplatin-based chemoradiotherapy were selected and reviewed by at least two independent reviewers, with disagreements resolved by a third reviewer. FINDINGS: A total of 737 studies were identified, of which 314 assessed immune biomarkers in immunocompetent patients (30 included in the final analysis) and 327 studies in immunosuppressed patients (5 included in the final analysis). The strongest prognostic indicators were lymphopenia and elevated neutrophil-to-lymphocyte ratio. Other potential markers included HPV-specific lymphocyte response, cytokine profile, expression of immune-blocking antigens on cell surfaces, and tumor-associated lymphocyte, macrophage, and neutrophil infiltration. Studies of immunosuppressed patients described more severe cytopenic changes overall and concluded that viral suppression led to improved outcomes. CONCLUSIONS: The immunologic interplay at work in cervical cancer development, progression, and treatment is complex. Strong evidence was found in favor of lymphopenia and elevated neutrophil-to-lymphocyte ratio being prognostic for worse outcomes with other markers showing potential associations as well. Although the interpretation of immune status with regard to treatment approach remains unclear, future studies should aim to tailor treatment that minimizes possible detrimental immune effects.


Subject(s)
Chemoradiotherapy , Neoplasm Recurrence, Local/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/therapy , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/immunology , Cisplatin/therapeutic use , Female , HIV Infections/immunology , Humans , Immunocompetence , Immunocompromised Host , Lymphocytes/cytology , Lymphocytes/immunology , Lymphopenia/mortality , Monitoring, Immunologic , Neoplasm Recurrence, Local/mortality , Neutrophils/cytology , Neutrophils/immunology , Prognosis , Radiation-Sensitizing Agents/therapeutic use , Treatment Outcome , Tumor Microenvironment/immunology , Uterine Cervical Neoplasms/mortality
6.
AIDS ; 35(12): 2051-2054, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34049356

ABSTRACT

We report on the post-hoc analysis of three clinical studies (NCT01935089, NCT00594880 and NCT00051818) with chronically HIV-infected, immune-reconstituted individuals with similar entry criteria, and demographics interrupting antiretroviral therapy (ART) without or with 5 weeks of weekly pegylated (Peg)-IFN-α2b or Peg-IFN-α2a immunotherapy added onto ART. Results show similar rates of viral suppression between both immunotherapies when continued during a 4-week ART interruption, despite Peg-IFN-α2a maintaining significantly higher trough blood levels.


Subject(s)
Antiviral Agents , HIV Infections , Antiviral Agents/therapeutic use , Clinical Studies as Topic , Drug Therapy, Combination , HIV Infections/drug therapy , Humans , Interferon alpha-2/therapeutic use , Polyethylene Glycols/therapeutic use , Recombinant Proteins , Treatment Outcome
7.
mBio ; 12(1)2021 02 23.
Article in English | MEDLINE | ID: mdl-33622719

ABSTRACT

Lipids are biologically active molecules involved in a variety of cellular processes and immunological functions, including inflammation. It was recently shown that phospholipids and their derivatives, lysophospholipids, can reactivate latent (dormant) tumor cells, causing cancer recurrence. However, the potential link between lipids and HIV latency, persistence, and viral rebound after cessation of antiretroviral therapy (ART) has never been investigated. We explored the links between plasma lipids and the burden of HIV during ART. We profiled the circulating lipidome from plasma samples from 24 chronically HIV-infected individuals on suppressive ART who subsequently underwent an analytic treatment interruption (ATI) without concurrent immunotherapies. The pre-ATI viral burden was estimated as time-to-viral-rebound and viral load set points post-ATI. We found that higher pre-ATI levels of lysophospholipids, including the proinflammatory lysophosphatidylcholine, were associated with faster time-to-viral-rebound and higher viral set points upon ART cessation. Furthermore, higher pre-ATI levels of the proinflammatory by-product of intestinal lysophosphatidylcholine metabolism, trimethylamine-N-oxide (TMAO), were also linked to faster viral rebound post-ART. Finally, pre-ATI levels of several phosphatidylcholine species (lysophosphatidylcholine precursors) correlated strongly with higher pre-ATI levels of HIV DNA in peripheral CD4+ T cells. Our proof-of-concept data point to phospholipids and lysophospholipids as plausible proinflammatory contributors to HIV persistence and rapid post-ART HIV rebound. The potential interplay between phospholipid metabolism and both the establishment and maintenance of HIV latent reservoirs during and after ART warrants further investigation.IMPORTANCE The likelihood of HIV rebound after stopping antiretroviral therapy (ART) is a combination of the size of HIV reservoirs that persist despite ART and the host immunological and inflammatory factors that control these reservoirs. Therefore, there is a need to comprehensively understand these host factors to develop a strategy to cure HIV infection and prevent viral rebound post-ART. Lipids are important biologically active molecules that are known to mediate several cellular functions, including reactivating latent tumor cells; however, their role in HIV latency, persistence, and post-ART rebound has never been investigated. We observed significant links between higher levels of the proinflammatory lysophosphatidylcholine and its intestinal metabolic by-product, trimethylamine-N-oxide, and both faster time-to-viral-rebound and higher viral load set point post-ART. These data highlight the need for further studies to understand the potential contribution of phosphatidylcholine and lysophosphatidylcholine metabolism in shaping host immunological and inflammatory milieu during and after ART.


Subject(s)
Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , Phospholipids/blood , Phospholipids/metabolism , Viral Load , Virus Latency , Withholding Treatment , Adult , CD4-Positive T-Lymphocytes/virology , Cohort Studies , DNA, Viral/analysis , Female , HIV Infections/virology , Humans , Lysophosphatidylcholines/blood , Lysophosphatidylcholines/metabolism , Male , Middle Aged , Phosphatidylcholines/blood , Phosphatidylcholines/metabolism , Phospholipids/classification , Proof of Concept Study , Young Adult
8.
Clin Infect Dis ; 72(3): 495-498, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33527127

ABSTRACT

Accurate characterization of the human immunodeficiency virus (HIV) reservoir is imperative to develop an effective cure. HIV was measured in antiretroviral therapy-suppressed individuals using the intact proviral DNA assay (IPDA), along with assays for total or integrated HIV DNA, and inducible HIV RNA or p24. Intact provirus correlated with total and integrated HIV.


Subject(s)
HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , DNA, Viral/genetics , HIV Infections/drug therapy , HIV-1/genetics , Humans , Proviruses/genetics , Virus Latency
9.
Sci Transl Med ; 13(576)2021 01 13.
Article in English | MEDLINE | ID: mdl-33441429

ABSTRACT

Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their antiviral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally derived HIV-1 isolates from the plasma and CD4+ T cells of 26 individuals sampled longitudinally after transmission or after antiretroviral therapy (ART) and analytical treatment interruption. We determined the concentration of IFNα2 and IFNß that reduced viral replication in vitro by 50% (IC50) and found consistent changes in the sensitivity of HIV-1 to IFN-I inhibition both across individuals and over time. Resistance of HIV-1 isolates to IFN-I was uniformly high during acute infection, decreased in all individuals in the first year after infection, was reacquired concomitant with CD4+ T cell loss, and remained elevated in individuals with accelerated disease. HIV-1 isolates obtained by viral outgrowth during suppressive ART were relatively IFN-I sensitive, resembling viruses circulating just before ART initiation. However, viruses that rebounded after treatment interruption displayed the highest degree of IFNα2 and IFNß resistance observed at any time during the infection course. These findings indicate a dynamic interplay between host innate responses and the evolving HIV-1 quasispecies, with the relative contribution of IFN-I to HIV-1 control affected by both ART and analytical treatment interruption. Although elevated at transmission, host innate pressures are the highest during viral rebound, limiting the viruses that successfully become reactivated from latency to those that are IFN-I resistant.


Subject(s)
HIV Infections , HIV-1 , Interferon Type I , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , Humans , Interferon Type I/pharmacology , Viral Load , Virus Replication
10.
AIDS Res Hum Retroviruses ; 37(6): 433-443, 2021 06.
Article in English | MEDLINE | ID: mdl-33323024

ABSTRACT

In the pilot NCT01935089 trial, we tested whether pegylated interferon alpha2b (Peg-IFN-α2b) with antiretroviral therapy (ART) was safe and could impact HIV and immune measures in blood and in gut-associated lymphoid tissue (GALT). Twenty HIV-1+ ART-suppressed individuals received 1 µg/kg/week Peg-IFN-α2b with ART for 20 weeks, with intermediate 4-week analytical ART interruption (ATI). Safety, immune activation, HIV viral load and integrated HIV DNA in blood, and HIV RNA and DNA in gut biopsies were measured. A total of 7/20 participants experienced grade 3-4 adverse events, while 17/20 participants completed the study. Of the 17 participants who completed the study, 8 remained suppressed during ATI, while all 17 were suppressed at end of treatment (EoT). As expected, treatment increased activation of T and natural killer (NK) cells and IFN-stimulated molecule expression on monocytes in periphery. While circulating CD4+ T cells showed a trend for a decrease in integrated HIV DNA, GALT showed a significant decrease in HIV-1 RNA+ cells as measured by in situ hybridization along with a reduction in total HIV DNA and cell-associated RNA by EoT. The observed decrease in HIV-1 RNA+ cells in GALT was positively associated with the decrease in activated NK cells and macrophages. This study documents for the first time that 20 weeks of immunotherapy with Peg-IFN-α2b+ART (inclusive of a 4-week ATI) is safe and results in an increase in blood and GALT immune activation and in a significant decrease in HIV-1 RNA+ cells in GALT in association with changes in innate cell activation.


Subject(s)
HIV Infections , HIV-1 , Antiviral Agents/therapeutic use , HIV Infections/drug therapy , Humans , Interferon-alpha/therapeutic use , Polyethylene Glycols/therapeutic use , Recombinant Proteins/therapeutic use , Viral Load
11.
EBioMedicine ; 59: 102945, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32827942

ABSTRACT

BACKGROUND: A comprehensive understanding of host factors modulated by the antiviral cytokine interferon-α (IFNα) is imperative for harnessing its beneficial effects while avoiding its detrimental side-effects during HIV infection. Cytokines modulate host glycosylation which plays a critical role in mediating immunological functions. However, the impact of IFNα on host glycosylation has never been characterized. METHODS: We assessed the impact of pegylated IFNα2a on IgG glycome, as well as CD8+ T and NK cell-surface glycomes, of 18 HIV-infected individuals on suppressive antiretroviral therapy. We linked these glycomic signatures to changes in inflammation, CD8+ T and NK cell phenotypes, and HIV DNA. FINDINGS: We identified significant interactions that support a model in which a) IFNα increases the proportion of pro-inflammatory, bisecting GlcNAc glycans (known to enhance FcγR binding) within the IgG glycome, which in turn b) increases inflammation, which c) leads to poor CD8+ T cell phenotypes and poor IFNα-mediated reduction of HIV DNA. Examining cell-surface glycomes, IFNα increases levels of the immunosuppressive GalNAc-containing glycans (T/Tn antigens) on CD8+ T cells. This induction is associated with lower HIV-gag-specific CD8+ T cell functions. Last, IFNα increases levels of fucose on NK cells. This induction is associated with higher NK functions upon K562 stimulation. INTERPRETATION: IFNα causes host glycomic alterations that are known to modulate immunological responses. These alterations are associated with both detrimental and beneficial consequences of IFNα. Manipulating host glycomic interactions may represent a strategy for enhancing the positive effects of IFNα while avoiding its detrimental side-effects. FUNDING: NIH grants R21AI143385, U01AI110434.


Subject(s)
Antiviral Agents/pharmacology , HIV Infections/metabolism , HIV Infections/virology , HIV-1/drug effects , Interferon-alpha/pharmacology , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Glycosylation/drug effects , HIV Infections/drug therapy , HIV Infections/immunology , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Inflammation Mediators/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Count , Polysaccharides/metabolism
12.
AIDS ; 34(10): 1461-1466, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32675559

ABSTRACT

OBJECTIVE: Glycosylation plays a critical role in mediating several antibody (mainly immunoglobulin G; IgG) immunological functions, including antibody-dependent cell-mediated cytotoxicity (ADCC), and anti-inflammatory activities. We investigated whether IgG glycosylation and immune profile patterns are differentially modulated in mono and dual infection using samples from untreated hepatitis C virus (HCV)-infected individuals with and without co-infection with antiretroviral therapy (ART)-suppressed HIV. DESIGN: IgG glycosylation, immune subsets, natural killer cell function, and liver enzymes were assessed in 14 HCV mono-infected and 27 ART-suppressed HIV/HCV co-infected participants naïve to HCV treatment. Historic IgG glycosylation data from 23 ART-suppressed chronically HIV-infected individuals were also used for comparisons. METHODS: Plasma IgG glycosylation was assessed using capillary electrophoresis. Whole blood was used for immune subset characterization by flow cytometry. Peripheral blood mononuclear cells were used to measure constitutive and interferon-α-induced K562 target cell lysis. Statistical analysis was performed using R (3.5.0). RESULTS: HIV/HCV had lower levels of pro-ADCC-associated nonfucosylated glycans when compared with HIV [e.g. di-sialylated A2 percentage (%): P = 0.04], and higher levels of T and myeloid cell activation/exhaustion when compared with HCV (e.g. CD3CD8CD38 %: P < 0.001). Finally, in HCV high levels of the anti-inflammatory galactosylated and sialylated glycans were associated with low plasma levels of aspartate aminotransferase (AST), low CD8 T-cell activation, and high CD8 T-cell exhaustion. CONCLUSION: HCV modulates IgG glycosylation profile in HIV co-infected individuals on suppressive ART. These results could inform on the modulation of IgG glycans in other mono and dual infections.


Subject(s)
Coinfection , HIV Infections , Hepatitis C , Immunoglobulin G/chemistry , Anti-HIV Agents/therapeutic use , Coinfection/immunology , Coinfection/virology , Glycosylation , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/immunology , Hepacivirus/immunology , Hepatitis C/complications , Hepatitis C/immunology , Humans , Leukocytes, Mononuclear
13.
AIDS ; 34(5): 681-686, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31972605

ABSTRACT

OBJECTIVE: HIV cure research urgently needs to identify pre-analytic treatment interruption (ATI) biomarkers of time-to-viral-rebound and viral setpoint to mitigate the risk of ATI and accelerate development of a cure. We previously reported that galactosylated IgG glycans, G2, negatively correlate with cell-associated HIV DNA and RNA during antiretroviral therapy (ART). We hypothesized that this and other plasma glycomic traits can predict time-to-viral-rebound and viral setpoint upon ART cessation. DESIGN: We profiled the circulating glycomes (plasma and bulk IgG) of two geographically distinct cohorts: Philadelphia Cohort - 24 HIV-infected, ART-suppressed individuals who had participated in an open-ended ATI study without concurrent immunomodulatory agents. Johannesburg Cohort - 23 HIV-infected, ART-suppressed individuals who had participated in a 2-week ATI. METHODS: Capillary electrophoresis and lectin microarray were used for glycomic analyses. Cox proportional-hazards model and log-rank test were used for statistical analyses. RESULTS: Higher pre-ATI levels of the IgG glycan, G2, were significantly associated with a longer time-to-viral-rebound (hazard ratio = 0.12, P = 0.05). In addition to G2, we identified several predictive glycomic traits in plasma, for example, levels of FA2BG1, a non-sialylated, core-fucosylated glycan, associated with a longer time-to-viral-rebound (hazard ratio = 0.023, P = 0.05), whereas FA2G2S1, a sialylated glycan, associated with a shorter time-to-viral-rebound (hazard ratio = 24.1, P = 0.028). Additionally, pre-ATI plasma glycomic signatures associated with a lower viral setpoint, for example, T-antigen (Galß1-3GalNAc) (r = 0.75, P = 0.0007), or a higher viral setpoint, for example, polylactosamine (r = -0.58, P = 0.01). These results were initially validated in the Johannesburg Cohort. CONCLUSION: We describe first-in-class, non-invasive, plasma and IgG glycomic biomarkers that inform time-to-viral-rebound and viral setpoint in two geographically distinct cohorts.


Subject(s)
Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active , Glycomics , HIV Infections/drug therapy , HIV-1/physiology , Biomarkers , HIV Infections/blood , HIV-1/genetics , Humans , RNA, Viral/blood , South Africa , Viral Load/drug effects , Virus Replication
14.
J Immunol ; 203(3): 705-717, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31253727

ABSTRACT

We previously reported that pegylated IFN-α2a (Peg-IFN-α2a) added to antiretroviral therapy (ART)-suppressed, HIV-infected subjects resulted in plasma HIV control and integrated HIV DNA decrease. We now evaluated whether innate NK cell activity or PBMC transcriptional profiles were associated with decreases in HIV measures. Human peripheral blood was analyzed prior to Peg-IFN-α2a administration (ART, baseline), after 5 wk of ART+Peg-IFN-α2a, and after 12 wk of Peg-IFN-α2a monotherapy (primary endpoint). After 5 wk of ART+Peg-IFN-α2a, immune subset frequencies were preserved, and induction of IFN-stimulated genes was noted in all subjects except for a subset in which the lack of IFN-stimulated gene induction was associated with increased expression of microRNAs. Viral control during Peg-IFN-α2a monotherapy was associated with 1) higher levels of NK cell activity and IFN-γ-induced protein 10 (IP-10) on ART (preimmunotherapy) and 2) downmodulation of NK cell KIR2DL1 and KIR2DL2/DL3 expression, transcriptional enrichment of expression of genes associated with NK cells in HIV controller subjects, and higher ex vivo IFN-α-induced NK cytotoxicity after 5 wk of ART+Peg-IFN-α2a. Integrated HIV DNA decline after immunotherapy was also associated with gene expression patterns indicative of cell-mediated activation and NK cytotoxicity. Overall, an increase in innate activity and NK cell cytotoxicity were identified as correlates of Peg-IFN-α2a-mediated HIV control.


Subject(s)
Antiretroviral Therapy, Highly Active/methods , HIV Infections/drug therapy , HIV-1/drug effects , Interferon-alpha/therapeutic use , Killer Cells, Natural/immunology , Polyethylene Glycols/therapeutic use , Cells, Cultured , Chemokine CXCL10/metabolism , HIV Infections/immunology , HIV-1/immunology , Humans , MicroRNAs/biosynthesis , MicroRNAs/genetics , Receptors, KIR2DL1/biosynthesis , Receptors, KIR2DL2/biosynthesis , Recombinant Proteins/therapeutic use
15.
Front Immunol ; 10: 267, 2019.
Article in English | MEDLINE | ID: mdl-30842775

ABSTRACT

Endogenous plasma levels of the immunomodulatory carbohydrate-binding protein galectin-9 (Gal-9) are elevated during HIV infection and remain elevated after antiretroviral therapy (ART) suppression. We recently reported that Gal-9 regulates HIV transcription and potently reactivates latent HIV. However, the signaling mechanisms underlying Gal-9-mediated viral transcription remain unclear. Given that galectins are known to modulate T cell receptor (TCR)-signaling, we hypothesized that Gal-9 modulates HIV transcriptional activity, at least in part, through inducing TCR signaling pathways. Gal-9 induced T cell receptor ζ chain (CD3ζ) phosphorylation (11.2 to 32.1%; P = 0.008) in the J-Lat HIV latency model. Lck inhibition reduced Gal-9-mediated viral reactivation in the J-Lat HIV latency model (16.8-0.9%; P < 0.0001) and reduced both Gal-9-mediated CD4+ T cell activation (10.3 to 1.65% CD69 and CD25 co-expression; P = 0.0006), and IL-2/TNFα secretion (P < 0.004) in primary CD4+ T cells from HIV-infected individuals on suppressive ART. Using phospho-kinase antibody arrays, we found that Gal-9 increased the phosphorylation of the TCR-downstream signaling molecules ERK1/2 (26.7-fold) and CREB (6.6-fold). ERK and CREB inhibitors significantly reduced Gal-9-mediated viral reactivation (16.8 to 2.6 or 12.6%, respectively; P < 0.0007). Given that the immunosuppressive rapamycin uncouples HIV latency reversal from cytokine-associated toxicity, we also investigated whether rapamycin could uncouple Gal-9-mediated latency reactivation from its concurrent pro-inflammatory cytokine production. Rapamycin reduced Gal-9-mediated secretion of IL-2 (4.4-fold, P = 0.001) and TNF (4-fold, P = 0.02) without impacting viral reactivation (16.8% compared to 16.1%; P = 0.2). In conclusion, Gal-9 modulates HIV transcription by activating the TCR-downstream ERK and CREB signaling pathways in an Lck-dependent manner. Our findings could have implications for understanding the role of endogenous galectin interactions in modulating TCR signaling and maintaining chronic immune activation during ART-suppressed HIV infection. In addition, uncoupling Gal-9-mediated viral reactivation from undesirable pro-inflammatory effects, using rapamycin, may increase the potential utility of recombinant Gal-9 within the reversal of HIV latency eradication framework.


Subject(s)
Galectins/immunology , HIV Infections/immunology , HIV-1/immunology , MAP Kinase Signaling System/immunology , Receptors, Antigen, T-Cell/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Line , Cell Line, Tumor , Gene Expression Regulation, Viral/immunology , Humans , Jurkat Cells , Lymphocyte Activation/immunology , Signal Transduction/immunology , Transcription, Genetic/immunology , Tumor Necrosis Factor-alpha/immunology , Virus Activation/immunology , Virus Latency/immunology , Virus Replication/immunology
16.
Carcinogenesis ; 40(2): 225-233, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30364933

ABSTRACT

Identification of factors associated with human papillomavirus (HPV) cervical histopathology or recurrence/relapse following loop electrosurgical excision procedure (LEEP) would allow for better management of the disease. We investigated whether gene signatures could (i) associate with HPV cervical histopathology and (ii) identify women with post-LEEP disease recurrence/relapse. Gene array analysis was performed on paraffin-embedded cervical tissue-isolated RNA from two cross-sectional cohorts of antiretroviral therapy (ART)-suppressed HIV+HPV+ coinfected women: (i) 55 women in South Africa recruited into three groups: high risk (HR) (-) (n = 16) and HR (+) (n = 15) HPV without cervical histopathology and HR (+) HPV with cervical intraepithelial neoplasia (CIN) grade 1/2/3 (n = 24), (ii) 28 women in Botswana with CIN2/3 treated with LEEP 12-month prior to recruitment and presenting with (n = 13) and without (n = 15) lesion recurrence/relapse (tissue was analyzed at first LEEP). Three distinct gene expression signatures identified were able to segregate: (i) HR+ HPV and CIN1/2/3, (ii) HR HPV-free and cervical histopathology-free and (iii) HR+ HPV and cervical histopathology-free. Immune activation and neoplasia-associated genes (n = 272 genes; e.g. IL-1A, IL-8, TCAM1, POU4F1, MCM2, SMC1B, CXCL6, MMP12) were a feature of cancer precursor dysplasia within HR HPV infection. No difference in LEEP tissue gene expression was detected between women with or without recurrence/relapse. In conclusion, distinctive gene signatures were associated with presence of cervical histopathology in tissues from ART-suppressed HIV+/HPV+ coinfected women. Lack of detection of LEEP tissue gene signature able to segregate subsequent post-LEEP disease recurrence/relapse indicates additional factors independent of local gene expression as determinants of recurrence/relapse.


Subject(s)
Cervix Uteri/pathology , Gene Expression/genetics , Papillomavirus Infections/genetics , Papillomavirus Infections/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Adult , Anti-Retroviral Agents/pharmacology , Cervix Uteri/drug effects , Cervix Uteri/virology , Cross-Sectional Studies , Female , Gene Expression/drug effects , Gene Expression Profiling/methods , HIV Infections/drug therapy , HIV Infections/pathology , HIV Infections/virology , Humans , Neoplasm Recurrence, Local/etiology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/virology , Papillomaviridae/drug effects , Papillomavirus Infections/drug therapy , Papillomavirus Infections/virology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/virology , Uterine Cervical Dysplasia/drug therapy , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/pathology , Uterine Cervical Dysplasia/virology
17.
AIDS ; 32(13): 1763-1772, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30045057

ABSTRACT

OBJECTIVE: The impact of short-term analytical treatment interruptions (ATI) on the levels of cellular HIV and of residual activation after subsequent antiretroviral therapy (ART)-mediated plasma HIV viral load re-suppression remains under active investigation. DESIGN: Peripheral blood mononuclear cells (PBMC) from 23 ART-suppressed, chronically HIV-1-infected patients were evaluated at the initiation of an ATI, during ATI, and following plasma re-suppression of HIV with ART. METHODS: T-cell activation was measured by flow cytometry. Total cellular HIV DNA, and episomal 2-long terminal repeat (2-LTR) circles were measured by droplet digital PCR (ddPCR). Cellular HIV multiply spliced RNA (tat/rev), unspliced (gag), and poly(A) tailed transcripts [poly(A)] were measured by reverse transcriptase-ddPCR. Analyses were performed using R version 2.5.1 or JMP Pro 11. RESULTS: ATI (median ATI duration, 4 weeks) resulted in a rise of plasma HIV RNA (median = 72900 copies/ml), decrease in CD4+ T cells/µl (median = 511.5 cells/µl; P = 0.0001), increase in T-cell activation, and increase in cellular HIV DNA and RNA. Mean fluorescence intensity of CD38 on CD4+HLA-DR+ T cells at baseline was positively associated with total HIV DNA levels during ATI (pol: P = 0.03, Rho = 0.44). Upon ART resumption, plasma HIV re-suppression occurred after a median of 13 weeks and resulted in restoration of pre-ATI CD4+ T cells/µl, T-cell activation, and levels of cellular HIV DNA and RNA. CONCLUSION: Monitored viremia and immune activation during an ATI in ART-suppressed chronic HIV-infected patients does not change the amount of persistent cellular HIV RNA or total HIV DNA after ART-mediated re-suppression.


Subject(s)
Anti-Retroviral Agents/administration & dosage , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/isolation & purification , Viral Load , Withholding Treatment , Adult , Female , Flow Cytometry , Humans , Leukocytes, Mononuclear/virology , Male , Middle Aged , Plasma/virology , Young Adult
18.
Lasers Surg Med ; 50(5): 440-450, 2018 07.
Article in English | MEDLINE | ID: mdl-29799130

ABSTRACT

OBJECTIVE: Inflammation is a well-known consequence of surgery. Although surgical debulking of tumor is beneficial to patients, the onset of inflammation in injured tissue may impede the success of adjuvant therapies. One marker for postoperative inflammation is IL-6, which is released as a consequence of surgical injuries. IL-6 is predictive of response to many cancer therapies, and it is linked to various molecular and cellular resistance mechanisms. The purpose of this study was to establish a murine model by which therapeutic responses to photodynamic therapy (PDT) can be studied in the context of surgical inflammation. MATERIALS AND METHODS: Murine models with AB12 mesothelioma tumors were treated with either surgical resection or sham surgery with tumor incision but no resection. The timing and extent of IL-6 release in the tumor and/or serum was measured using enzyme-linked immunosorbent assay (ELISA) and compared to that measured in the serum of 27 consecutive, prospectively enrolled patients with malignant pleural mesothelioma (MPM) who underwent macroscopic complete resection (MCR). RESULTS: MPM patients showed a significant increase in IL-6 at the time MCR was completed. Similarly, IL-6 increased in the tumor and serum of mice treated with surgical resections. However, investigations that combine resection with another therapy make it necessary to grow tumors for resection to a larger volume than those that receive secondary therapy alone. As the larger size may alter tumor biology independent of the effects of surgical injury, we assessed the tumor incision model. In this model, tumor levels of IL-6 significantly increased after tumor incision. CONCLUSION: The tumor incision model induces IL-6 release as is seen in the surgical setting, yet it avoids the limitations of surgical resection models. Potential mechanisms by which surgical induction of inflammation and IL-6 could alter the nature and efficacy of tumor response to PDT are reviewed. These include a wide spectrum of molecular and cellular mechanisms through which surgically-induced IL-6 could change the effectiveness of therapies that are combined with surgery. The tumor incision model can be employed for novel investigations of the effects of surgically-induced, acute inflammation on therapeutic response to PDT (or potentially other therapies). Lasers Surg. Med. 50:440-450, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Inflammation/etiology , Interleukin-6/metabolism , Mesothelioma/therapy , Photochemotherapy , Pleural Neoplasms/therapy , Postoperative Complications/etiology , Animals , Disease Models, Animal , Humans , Mesothelioma/metabolism , Mice , Pleural Neoplasms/metabolism
19.
J Leukoc Biol ; 104(3): 461-471, 2018 09.
Article in English | MEDLINE | ID: mdl-29633346

ABSTRACT

Global antibody glycosylation is dynamic and plays critical roles in shaping different immunological outcomes and direct antibody functionality during HIV infection. However, the relevance of global antibody or plasma glycosylation patterns to HIV persistence after antiretroviral therapy (ART) has not been characterized. First, we compared glycomes of total plasma and isolated immunoglobulin G (IgG) from HIV+ ART-suppressed, HIV+ viremic, and HIV-negative individuals. Second, in ART-suppressed individuals, we examined the associations between glycomes and (1) levels of cell-associated HIV DNA and RNA in PBMCs and isolated CD4+ T cells, (2) CD4 count and CD4%, and (3) expression of CD4+ T-cell activation markers. HIV infection is associated with persistent alterations in the IgG glycome including decreased levels of disialylated glycans, which is associated with a lower anti-inflammatory activity, and increased levels of fucosylated glycans, which is associated with lower antibody-dependent cell-mediated cytotoxicity (ADCC). We also show that levels of certain mono- and digalactosylated nonfucosylated glycomic traits (A2G1, A2G2, and A2BG2), which have been reported to be associated with higher ADCC and higher anti-inflammatory activities, exhibit significant negative correlations with levels of cell-associated total HIV DNA and HIV RNA in ART-suppressed individuals. Finally, levels of certain circulating anti-inflammatory glycans are associated with higher levels of CD4 T cells and lower levels of T-cell activation. Our findings represent the first proof-of-concept evidence that glycomic alterations, known to be associated with differential states of inflammation and ADCC activities, are also associated with levels of HIV persistence in the setting of ART suppression.


Subject(s)
Anti-HIV Agents/therapeutic use , Galactose/metabolism , HIV Infections/drug therapy , HIV Infections/metabolism , Immunoglobulin G/metabolism , Adult , CD4-Positive T-Lymphocytes , Humans , Male , Plasma/metabolism , Viral Load/drug effects , Viremia/drug therapy , Viremia/metabolism
20.
Oncoimmunology ; 5(5): e1128612, 2016 May.
Article in English | MEDLINE | ID: mdl-27467943

ABSTRACT

Persistence of human papillomavirus (HPV) and cervical disease in the context of HIV co-infection can be influenced by introduction of antiretroviral therapy (ART) and sustained immune activation despite ART. We conducted a cross-sectional study in order to evaluate immune activation/exhaustion in ART-suppressed HIV(+) women with or without high-risk (HR) HPV-related cervical intraepithelial neoplasia (CIN). 55 South African women were recruited in three groups: HR (-) (n = 16) and HR (+) (n = 15) HPV with negative cervical histopathology, and HR (+) HPV with CIN grade 1/2/3 (n = 24). Sampling included endocervical brushing (HPV DNA genotyping), Pap smear (cytology), colposcopic punch biopsy (histopathology, histochemical evaluation of immune cells), and peripheral blood (clinical assessment, flow cytometry-based immune subset characterization). Statistics were done using R2.5.1. Irrespective of the presence of CIN, HR (+) HPV women had higher circulating levels of T cells expressing markers of activation/exhaustion (CD38, PD1, CTLA-4, BTLA, CD160), Tregs, and myeloid subsets expressing corresponding ligands (PDL1, PDL2, CD86, CD40, HVEM) than HR (-) HPV women. A decrease in circulating NK cells was associated with CIN grade. CD4(+) T cell count associated negatively with T cell exhaustion and expression of negative regulators on myeloid cells. Women with CIN when compared to HR (-) HPV women, had higher cervical cell density in stroma and epithelium for CD4(+), CD68(+), and CD11c(+) cells, and only in stroma for CD8(+) cells. We conclude that in ART-suppressed HIV-infected women with HPV co-infection the levels of T and myeloid cell activation/exhaustion are associated with the presence of HR HPV genotypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...