Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 808: 152137, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34864032

ABSTRACT

Biological ion exchange (BIEX) refers to operating ion exchange (IX) filters with infrequent regeneration to favor the microbial growth on resin surface and thereby contribute to the removal of organic matter through biodegradation. However, the extent of biodegradation on BIEX resins is still debatable due to the difficulty in discriminating between biodegradation and IX. The objective of the present study was to evaluate the performance of BIEX resins for the removal of organic micropollutants and thereby validate the occurrence of biodegradation. The removals of biodegradable micropollutants (neutral: caffeine and estradiol; negative: ibuprofen and naproxen) and nonbiodegradable micropollutants with different charges (neutral: atrazine and thiamethoxam; negative: PFOA and PFOS) were respectively monitored during batch tests with biotic and abiotic BIEX resins. Results demonstrated that biodegradation contributed to the removal of caffeine, estradiol, and ibuprofen, confirming that biodegradation occurred on the BIEX resins. Furthermore, biodegradation contributed to a lower extent to the removal of naproxen probably due to the absence of an adapted bacterial community (Biotic: 49% vs Abiotic: 38% after 24 h batch test). The removal of naproxen, PFOS, and PFOA were attributable to ion exchange with previously retained natural organic matter on BIEX resins. Nonbiodegradable and neutral micropollutants (atrazine and thiamethoxam) were minimally (6%-10%) removed during the batch tests. Overall, the present study corroborates that biomass found on BIEX resins contribute to the removal of micropollutants through biodegradation and ion exchange resins can be used as biomass support for biofiltration.


Subject(s)
Water Pollutants, Chemical , Water Purification , Biodegradation, Environmental , Ion Exchange , Ion Exchange Resins , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 801: 149583, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34418615

ABSTRACT

Physical remediation such as the use of booms has been applied for most oil-spill cleanup activities in surface water. The application of dispersants has been controversial primarily due to the unknown impacts on drinking water sources. This study investigated changes in surface water quality following dispersant application to crude oil spills and the subsequent impact on the efficiency of ballasted flocculation, a physicochemical treatment process applied in many drinking water treatment plants (DWTP). Contamination of surface water was performed in the presence of crude oil concentrations (109 ± 13 mg/L) with and without dispersants. Water quality parameters such as turbidity and UVA254 were monitored and ballasted flocculation efficiency was assessed based on water quality as well as the removal of oil droplets, residual dispersant, and petroleum hydrocarbons as total organic carbon (TOC). Results showed that the measured water quality parameters except TOC are unsuitable indicators of petroleum hydrocarbon contamination in surface water. However, TOC lacked sensitivity when used in settled water to detect hydrocarbon contaminants. Although ballasted flocculation efficiency was not limited by the presence of crude oil and low dispersant concentrations when an optimized alum dose was applied (41 mg dry alum/L), the process was unable to remove other dispersant-related compounds that are not identifiable by the monitored water quality parameters. Measured concentrations of these compounds in settled waters were above the U.S. EPA's aquatic life benchmark (40 µg/L). Findings would be beneficial to DWTP in their efforts to upgrade their treatment processes and prepare oil-spill contingency plans.


Subject(s)
Drinking Water , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Petroleum/analysis , Petroleum Pollution/analysis , Surface-Active Agents , Water Pollutants, Chemical/analysis
3.
Water Res ; 146: 1-9, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30218906

ABSTRACT

Anionic exchange is an effective treatment option for the removal of natural organic matter from surface waters. However, the management of the spent brine regenerant often limits the adoption of this process. The current study reports one year of operation of ion exchange resins under biological mode (BIEX, i.e. without regeneration to promote biofilm growth on the media) compared to the performance of (i) ion exchange with weekly regeneration (IEX), (ii) granular activated carbon under biological mode (BAC) and (ii) granular activated carbon under adsorption mode (GAC). Four parallel pilot filters (GAC, BAC, IEX and BIEX) were fed with a colored and turbid river water without pretreatment. Although IEX provided the best performance (80% DOC removal) throughout the study, BIEX achieved a similar performance to IEX prior to DOC breakthrough (92 days) and subsequently achieved a mean DOC removal of 62% in warm water conditions. The GAC filter was rapidly exhausted (2 weeks) while the BAC filter only provided a 5% DOC reduction. Full nitrification was observed on both the BIEX and BAC filters under warm water conditions (>15 °C). After one year of operation, BIEX was successfully regenerated with brine. According to a mass balance, 69% of DOC removal in BIEX was due to ion exchange while we assume the remainder was biodegraded. Operation of ion exchange in biological mode is a promising option to reduce spent brine production while still achieving high DOC removal.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Ammonia , Charcoal , Ion Exchange
4.
Water Res ; 55: 150-61, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24607521

ABSTRACT

Assessing the presence of human pathogenic Cryptosporidium oocysts in surface water remains a significant water treatment and public health challenge. Most drinking water suppliers rely on fecal indicators, such as the well-established Escherichia coli (E. coli), to avoid costly Cryptosporidium assays. However, the use of E. coli has significant limitations in predicting the concentration, the removal and the transport of Cryptosporidium. This study presents a meta-analysis of E. coli to Cryptosporidium concentration paired ratios to compare their complex relationships in eight municipal wastewater sources, five agricultural fecal pollution sources and at 13 drinking water intakes (DWI) to a risk threshold based on US Environmental Protection Agency (USEPA) regulations. Ratios lower than the USEPA risk threshold suggested higher concentrations of oocysts in relation to E. coli concentrations, revealing an underestimed risk for Cryptosporidium based on E. coli measurements. In raw sewage (RS), high ratios proved E. coli (or fecal coliforms) concentrations were a conservative indicator of Cryptosporidium concentrations, which was also typically true for secondary treated wastewater (TWW). Removals of fecal indicator bacteria (FIB) and parasites were quantified in WWTPs and their differences are put forward as a plausible explanation of the sporadic ratio shift. Ratios measured from agricultural runoff surface water were typically lower than the USEPA risk threshold and within the range of risk misinterpretation. Indeed, heavy precipitation events in the agricultural watershed led to high oocyst concentrations but not to E. coli or enterococci concentrations. More importantly, ratios established in variously impacted DWI from 13 Canadian drinking water plants were found to be related to dominant fecal pollution sources, namely municipal sewage. In most cases, when DWIs were mainly influenced by municipal sewage, E. coli or fecal coliforms concentrations agreed with Cryptosporidium concentrations as estimated by the meta-analysis, but when DWIs were influenced by agricultural runoff or wildlife, there was a poor relationship. Average recovery values were available for 6 out of 22 Cryptosporidium concentration data sets and concomitant analysis demonstrated no changes in trends, with and without correction. Nevertheless, recovery assays performed along with every oocyst count would have enhanced the precision of this work. Based on our findings, the use of annual averages of E. coli concentrations as a surrogate for Cryptosporidium concentrations can result in an inaccurate estimate of the Cryptosporidium risk for agriculture impacted drinking water intakes or for intakes with more distant wastewater sources. Studies of upstream fecal pollution sources are recommended for drinking water suppliers to improve their interpretation of source water quality data.


Subject(s)
Cryptosporidium/isolation & purification , Drinking Water/microbiology , Escherichia coli/isolation & purification , Feces/microbiology , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL